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Abstract This article introduces an event–driven

approach for high performance computing of the

nonlinear trajectory of a basketball. The high-perfor-

mance approach differs from the analytical approach

of finding exact solutions to the basketball shot, which

only applies to special cases, and it differs from the

time-stepping approach, which only approximates the

solutions to the basketball shot. This paper shows that

the event-driven approach is computationally faster

than the time-stepping approach while being exact—

overcoming the disadvantages of the traditional

approaches. Furthermore, the event-driven approach’s

faster computational speed and robust generality is

necessary when running millions of simulations, and it

is therefore necessary, too, for the analysis of the

performance of a player or a shot. Indeed, the event-

driven approach will be able to provide a deeper

understanding of player and shot performance in the

game of basketball. In the event-driven approach, a

basketball undergoes a trajectory segment, which ends

in a collision with one of a number of possible bodies.

The simulation determines automatically the other-

wise unknown sequence of collisions. The simulation

advances from one trajectory segment to the next, each

separated by a collision, until the ball finally falls to

the ground. The article contains illustrative examples

and provides an easy-to-use MATLAB code.

Keywords Complementarity conditions � Event-

driven approach � Exact solutions � Fast computation �
Player and shot performance

1 Introduction

Today, we have reached a point at which a growing

number of scientific studies in basketball would

benefit from high performance computing. We begin

by providing the reader with some historical context

and after that describe the application of event-driven

dynamics to the basketball shot.

1.1 Historical context

Over the last half century, physical analysis transi-

tioned from playing almost no role to an indispensable

role in understanding the basketball shot. The devel-

opment occurred in stages. The first stage occurred

between 1980 and 2000 during which the analyst

performed the calculations by hand, which were

typically slow yet exact mathematical representations

of the laws of physics. Before the 1980s, there were

almost no scientific publications on the basketball
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shot. Researchers had analyzed a few simple trajec-

tories, like Hobson [1] but little further. Then,

Brancazio [2] and Tan and Miller [3] independently

published articles on the basketball shot in the same

issue of the American Journal of Physics. Brancazio

asked whether knowledge of physics could improve

one’s basketball skills. He explained why backspin

improves a shot, examined the margin of error in the

release of a ball, and why releasing a ball with

minimum speed is preferred. Tan and Miller compared

the underhand free throw with the overhead free

throw. They explained with physics why the overhead

shot is preferred from a kinematic (ball motion)

viewpoint and the underhand shot from a kinesthetic

(body motion) viewpoint. By the end of this first stage

of the development of our understanding of the

basketball shot, Hamilton and Reinschmidt [4], for

example, had studied the release height for the free

throw, and had determined optimal trajectories.

The second stage occurred between 2000 and the

present. With the growing popularity of the com-

puter, analysts began to perform calculations by

computer, which were much faster although they

employed approximate methods. Furthermore, with

more people taking seriously the physical analysis

of the basketball shot, the number of experimental

studies increased. The following citations are a

small but representative sample of the developments

and main contributions. With respect to the exper-

imental studies, Mullineaux and Uhl [5] studied 20

free throws and tried to relate the kinesthetic

movements of the players to the outcome of the

shots. Verhoeven and Newell [6] studied differences

in kinesthetic movements with the dominant and

non-dominant hands of 50 shots. Nakano et al. [7]

studied the energy flow from the lower to upper

limbs of 10 male players while shooting the ball at

different distances from the hoop. Khlifa, et al. [8]

reduced the size of the hoop to assist in shot

training. To further help with the experimental

studies, Addelrasoul et al. [9] and Straeten et al.

[10] instrumented basketballs with real-time sensors,

and Przednowek [11] developed an automated

tracking system in order to monitor ball motion.

With respect to the advancements made in perform-

ing calculations by computer, Silverberg, Tran, and

Adcock [12] developed the first general-purpose time-

stepping approach for the basketball shot. The time

stepping was adaptive in order to account for the

proximity of contact surfaces, following best practices

in the numerical integration of ordinary differential

equations [13]. Huston and Grau [14] studied the direct

shot and the layup. Okubo and Hubbard [15] used

reaction forces to patch sub-models corresponding to

the different contact surfaces. Tran and Silverberg [16]

found the optimal release conditions for the free throw

and Silverberg, Tran, and Adams [17] found the

optimal targets on the backboard for bank shots.

Covaci et al. [18] developed a virtual reality approach

for free throw training. Min [19] used Monte Carlo

simulations to collect data sets of trajectories for

optimizing shooting strategies and Zhao et al. [20]

developed a general method for generating large data

sets of trajectories.

1.2 Advancement of the state-of-the-art

At present, the role of physical analysis in understanding

the dynamics of the basketball shot is on the cusp of a

third stage, brought on by the need for statistical

analyses and the advent of high-performance computing

in nonlinear dynamic systems. During the first stage of

development, the analysts had developed exact formu-

las. However, the formulas were available only to a

limited number of shots, such as the swish, in-plane

motion, and shots that strike the backboard or the rim

once. During the second stage of development, analysts

turned to time-stepping calculations on the computer.

This generated approximate but accurate answers. It

became possible to find trajectories for any set of initial

conditions, including out-of-plane shots; the analysis

became three-dimensional. For example, one could now

analyze in detail the nonlinear three-dimensional

dynamics of a basketball rolling and slipping on the

rim by the time stepping approach [21]. This included

the previously unknown sequence of collisions that the

ball can undergo with contact surfaces. It became

possible to allow for any combination of ball collisions

with the backboard, rim, and bridge; the analysis

became general-purpose, following the reliable method-

ologies of time-stepping that accommodate finding the

locations of contact surfaces [22]. Clearly, the second

stage of development that employed calculations by

computer using the time-stepping approach was much

more powerful and versatile than the first stage of

performing calculations by hand.

Nonetheless, in the time-stepping approach, when

analyzing general trajectories, one needs to find the
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nine basketball states at each time step (position,

velocity, and angular velocity coordinates), and check

for collisions at each time step, too, which are

intensive computationally. The run time became even

more intensive when there was a need to simulate a

large number of trajectories, such as the millions of

trajectories that statistical analyses require in order to

determine chances of success, or for the study of

particular shot types. Indeed, by the end of 2020,

analysts began to seek large data sets in order to

understand the basketball shot more fully, and they

recognized that this requires robust, general-purpose

methods and even faster and more precise computing.

In short, the calculations by hand during the first stage

of development were exact yet slow and not general-

purpose, and the calculations by computer in the

second stage used the time-stepping approach, which

were general-purpose yet not exact. A high perfor-

mance computing advancement in a next stage seeks

greater computational speed and accuracy, in response

to the need for the analysis of large data sets.

Toward the high performance computing advance-

ment in the dynamics of the basketball shot, we

considered event-driven methodologies. They consti-

tute three sets of algorithms that do the following [23]:

(1) Find a lower time bound for a next collision surface

from among a set of possible surfaces, (2) Replace a

surface that has a complex shape with surfaces that

have simple shapes, and (3) Reduce the number of

candidate surfaces of interference. When one com-

pares the requirements in event-driven dynamics with

the requirements in basketball dynamics, one finds that

event-driven dynamics is ideally suited to the basket-

ball shot problem. The natural features of the basket-

ball shot problem are: (a) The shapes of the candidate

surfaces are simple, (b) The number of colliding

surfaces is small, (c) The candidate surfaces are static,

with the exception of the ball, and (d) The free inflight

projectile motion of any segment of a ball’s trajectory

(between collisions) has an analytical form.

This paper demonstrates with high performance

computing how one improves significantly upon the

speed limitations of the calculations in the first two

stages while retaining the exact mathematical repre-

sentations of the laws of physics of the first stage and

the general-purpose three-dimensional features of the

second stage. Toward this end, we sought to apply the

event-driven approach [24] found in high performance

computing to the problem of simulating the nonlinear

trajectory of a basketball.

To apply the approach, one needs to convert a

trajectory into a sequence of instantaneous collisions

between rigid bodies. It is well-known that the collision

times between a basketball and any rigid body to which it

comes in contact is negligible compared to the time scale

of an overall motion, and therefore can be neglected.

However, to be able to adopt the event-driven approach,

one must also satisfy complementarity conditions. For

example, when contact regions on two bodies are flat and

parallel just before they collide, the location of a contact

point is influenced by the inner details of the material

behavior over the contact regions, in which case the event

driven approach cannot be applied. However, in the

basketball problem, the basketball is spherical and the

spatial sizes of the contact regions are small compared to

overall spatial dimensions; the locations of the contact

points do not depend on the material properties of the

contact surfaces, which satisfies the complementarity

conditions [25] and meets the requirements of the event-

driven approach.

Moreover, when adopting the event-driven

approach in the dynamics of the basketball shot

problem, one can eliminate time stepping, and replace

it with exact calculations. Indeed, as this paper shows,

high performance computing by the event-driven

approach can be seen as elevating our capability to

understand the basketball shot to a third stage. Note

that Silverberg, Tran, and Laue [26] first applied the

event-driven approach to a planar problem in basket-

ball (the free throw), and this article extends that work

to the general-purpose problem of predicting the three-

dimensional nonlinear trajectories of a basketball shot.

2 Method

It was possible to apply the event-driven approach to

the dynamics of the basketball shot because one can

divide its entire nonlinear trajectory into candidate

events (trajectory segments) that have exact mathe-

matical representations. One divides the entire non-

linear trajectory into planar trajectory segments in free

flight that begin and end with the ball colliding with a

surface. Note that these candidate trajectory segments

or events are the same ones that the earlier analysts had

calculated by hand. The event-driven approach
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determines the true trajectory segment from the

candidate trajectory segments, and thereupon pro-

duces the entire three-dimensional trajectory.

Figure 1 shows a representation of the event-driven

approach and Table 1 gives its flow diagram. As

shown in Fig. 1, a convex surface that corresponds to a

primary body, like the surface of a basketball,

undergoes an unobstructed trajectory in a given

domain until, at any point in time, it can collide with

one among a number of convex surfaces located in that

domain. The simulation begins with the primary body
Fig. 1 Event-driven approach

Table 1 Flow chart for event-driven simulation of basketball shot
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in an initial state and with time set to zero (Line 1 in

Table 1). The simulation advances from one trajectory

segment to the next, each separated by a collision.

Each trajectory segment begins with calculating a

candidate collision time of the primary surface with a

particular secondary surface, as though the two

surfaces were the only ones in the domain. The

minimum of the different candidate collision times is

the true collision (Line 2 in Table 1). From that

information, we calculate the state of the primary body

just before colliding with the true surface (Line 3 in

Table 1). Next, we end the program if we have reached

a specified maximum number N of trajectory segments

or if the true surface was the end-result surface, which

is a horizontal plane at the lower end of the domain

that the trajectory would cross eventually (Line 4 in

Table 1). Finally, if the program does not end, based

on collision dynamics, we calculate the basketball’s

state just after colliding with that surface, triggering

the advancement of the simulation to the next

trajectory segment (Line 5 in Table 1).

In the dynamics of basketball problem, each surface

corresponds to a single body and the secondary

surfaces are stationary. The primary body is the

basketball and its surface can collide with one of four

secondary surfaces during a single trajectory segment.

It can collide with a ring surface, a backboard surface,

a bridge surface, or an end-result surface.

2.1 Collision times

The simulation advances in time, trajectory segment

by trajectory segment, separated by individual colli-

sions. The index i corresponds to a trajectory segment

and to a collision (i = 1, 2, …, N), where N is a

maximum number of collisions allowed in the simu-

lation. Trajectory segment i begins just after the (i –

1)th collision; the states at this instant are designated

by the superscript (i – 1)?, which is just after collision i

– 1, and the states at the end time of trajectory segment

i are designated by the superscript i–, which is just

before collision i. Thus, at t = 0, when i = 1, the

designation is 0? , as shown in Line 1 of Table 1.

One expresses functionally the collision with

surface r (r = 1, 2, …, m) by the equality constraint

fr x tð Þ; y tð Þ; z tð Þð Þ ¼ 0 ð1Þ

The inequality constraints ðs ¼ 1; 2; :::; nrÞ for each

r are

grs x tð Þ; y tð Þ; z tð Þð Þ� 0 ð2Þ

The equality constraint represents the equation that

is satisfied when the surface of the primary body

Table 2 Equality

constraints and inequality

constraints for the

basketball shot

Ring surface

n3 ¼

x� xC
R

y� yC
R
z

R

2
6664

3
7775

f 1 ¼ �R2 þ x� xCð Þ2 þ y� yCð Þ2 þ z2

xC ¼ xffiffiffiffiffiffiffiffiffi
x2þy2

p RH ; yC ¼ yffiffiffiffiffiffiffiffiffi
x2þy2

p RH

Backboard surface

n3 ¼
1

0

0

2
4

3
5f 2 ¼ xþ a0 � RB

g21 ¼ �y� yB � 0; g22 ¼ y� yB � 0

g23 ¼ �zþ zB1 � 0; g24 ¼ z� zB2 � 0

Bridge surface

n3 ¼
0

0

1

2
4

3
5f 3 ¼ z� R

g31 ¼ �y� yBR � 0; g32 ¼ y� yBR � 0

R2
H � x2 � y2 � 0; x� 0

End-result surface

n3 ¼
1

0

0

2
4

3
5f 4 ¼ zþ H;H ¼ 0:2RB

success ¼ yes �RH �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
�RH ; vz\0

no otherwise

�
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touches the surface of a secondary body. The

inequality constraints, when they exist, place limits

on the equations that come from the boundary lines of

the surfaces. Table 2 gives the equality constraint and

the inequality constraints for each of the m = 4

surfaces for the basketball shot.

In the event-driven approach, the objective is to first

determine the smallest t[ e for which the equality

constraints, Eq. (1), are satisfied (Line 2 in Table 1,

specific expressions for the basketball shot given in

Table 2 and Fig. 2). The equality constraints are

explicitly functions of the spatial coordinates and

implicitly functions of time, as Eq. (1) and Table 2

show. In free flight, one can express the states over a

trajectory segment, in terms of time as

x ¼ x i�1ð Þþ þ v i�1ð Þþ
x t � t i�1ð Þþ

� �
; y ¼ y i�1ð Þþ þ v i�1ð Þþ

y t � t i�1ð Þþ
� �

z ¼ z i�1ð Þþ þ v i�1ð Þþ
z t � t i�1ð Þþ

� �
� g

2
t � t i�1ð Þþ

� �2

vx ¼ v i�1ð Þþ
x ; vy ¼ v i�1ð Þþ

y ; vz ¼ v i�1ð Þþ
z � g t � t i�1ð Þþ

� �

xx ¼ x i�1ð Þþ
x ;xy ¼ x i�1ð Þþ

y ;xz ¼ x i�1ð Þþ
z

ð3Þ

By substituting Eq. (3) into an equality constraint

one obtains an equality constraint that is explicitly a

function of time. The problem of determining the

collision time with any one of the secondary surfaces

becomes the problem of determining the smallest

positive root of a continuous and differentiable

function of time. One can find the root several ways.

In the case of the basketball shot, the functions fr

Fig. 2 Diagrams for

equality constraints

(contact): side, top, and

radial views
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(r = 1, 2, 3, 4) are all polynomials so one could find the

smallest positive root by converting the polynomials

into eigenvalue problems and then determining the

smallest positive eigenvalues of the associated eigen-

value problems. This approach is effective [26], but

we found the time-stepping and bisection approach to

be generally much faster. Therefore, we adopted this

simpler approach, and evaluated each function at

advancing instances of time, starting at t = e, using an

initial time step of emax. When advancing, one bisects

the time step and changes the direction in time after

there is a sign change in the function. The advancing

stops when the time step is less than e. With this

approach, it is important to select a emax that is not too

large in order to prevent the solution from bypassing

the smallest positive root.

After calculating the smallest positive root of each

function, the satisfaction of the inequality constraints

is tested. If any of the inequality constraints is not

satisfied, it means that the trajectory does not actually

intersect that surface, in which case one discards that

solution or sets that collision time to an arbitrarily

large number. The candidate collision times are

tr; ðr ¼ 1; 2; . . .;mÞ and the true collision time is

tis ¼ min ti1; t
i
2; . . .; t

i
m

� �
ð4Þ

where s is the surface index of the corresponding true

surface.

2.2 The states just before and after a collision

After obtaining the collision time of trajectory

segment i, the next step is to calculate the states of

the primary body at the end of trajectory segment i,

which is just before collision i. In the case of the

basketball shot, substituting the collision time of

trajectory i into Eq. (3) yields the desired states

xi�; yi�; zi�; vi�x ; vi�y ; vi�z ;xi�
x ;xi�

y ;xi�
z ð5Þ

As mentioned previously, there is the possibility of

ending the simulation at this point in the calculations.

If the simulation has not ended, the final step in

trajectory segment i is to calculate the states of the

primary body at the beginning of trajectory segment

i ? 1, which is just after collision i, that is, to

determine

xiþ; yiþ; ziþ; viþx ; viþy ; viþz ;xiþ
x ;xiþ

y ;xiþ
z ð6Þ

Determining the states just after collision i depends

on the collision dynamics over the near-instantaneous

duration of the collision. Toward this end, note that the

collision dynamics requires one to transform compo-

nents in the inertial frame (x, y, and z components) to

and from components in a contact frame (x1, x2, and x3

components). The triad of unit vectors for the contact

frame are the unit vector n3 normal to the collision

point and two other unit vectors—n1 and n2—that

define the tangent plane of the collision point (see

Fig. 3).

We set up this triad fn1; n2; n3g in a right-handed

order, beginning with n3 (see the expressions for the

normal unit vectors of each secondary surface in

Table 2). Next, we construct the unit vector n1 by first

selecting a unit vector n1
0 that has components

nu1
0 ¼ duv; index v ¼ max nu3j j; u ¼ 1; 2; 3ð Þ ð7Þ

where duv is the Kronecker-delta function

(duv ¼ 0 when u 6¼ v and duv ¼ 1 when u ¼ vÞ and

where v is the index of n3 that has the largest

magnitude. Then, we subtract from the component of

n1
0 its component in the direction of n3 and divide by

the resulting magnitude to yield a unit vector that is

perpendicular to n3. We obtain

n1 ¼ n01 � ðn01 � n3Þn3

n01 � ðn01 � n3Þn3

�� �� ð8Þ

Finally, we calculate n2 by letting

n2 ¼ n3 � n1 ð9Þ

With the unit vectors for the contact frame calcu-

lated, we are now able to transform components of any

vector from and to components in the contact frame

and the inertial frame. Letting vxyz represent a vector

Fig. 3 Unit vectors of the contact frame
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expressed in terms of inertial components and letting

v123 represent the same vector expressed in terms of

contact components, the relationship between them is

vxyz ¼ Rv123; vxyz ¼
vx
vy
vz

2
4

3
5; v123 ¼

v1

v2

v3

2
4

3
5

R ¼ n1 n2 n3½ � ¼
n11 n12 n13

n21 n22 n23

n31 n32 n33

2
4

3
5

ð10Þ

With the unit vectors for the contact frame calcu-

lated, we can now proceed to set up the collision

dynamics. From the free body diagram of the primary

body (see Fig. 4), showing only impulsive forces, we

obtain

r
þ

�
Fdt ¼ m vþBt � v�Bt

	 

ð11Þ

r
þ

�
r� Fdt ¼ I xþ � x�ð Þ ð12Þ

Equation (11) sets the linear impulse of the primary

body (the basketball) in the tangent plane equal to the

change in the body’s linear momentum in the tangent

plane over the collision time. Equation (12) sets the

angular impulse of the primary body about its mass

center equal to the change in its angular momentum

over that collision time. In Eq. (11), vBt ¼ vB1n1 þ
vB2n2 is the vector component of the velocity of the

mass center B in the tangent plane. In Eq. (12), the

relative position vector is r ¼ rC � rB ¼ �RBn3. In

addition to Eqs. (11) and (12), the relationship

between the velocities of points B and C are

vC ¼ vB þ x� rC � rBð Þ ð13Þ

where x is the primary body’s angular velocity vector.

In the case of the basketball shot, the contact begins

with sliding motion that almost immediately turns into

a rolling condition. Sliding motions occur after contact

only in exceptional cases, which scientists who model

basketball dynamics routinely neglect. Thus, follow-

ing these practices, we too assume that the basketball

enters into a roll condition during the collision, in

which case the tangential components of the velocity

of the contact point C at the end of the collision are

equal to zero, and the normal component of the

primary body obeys restitution physics, that is,

vþC1 ¼ 0; vþC2 ¼ 0; vþC3 ¼ �ev�C3 ð14Þ

Substituting Eq. (14) into Eq. (13) evaluated at the

end of the collision time yields

vþB1 � RBx
þ
2 ¼ 0; vþB2 þ RBx

þ
1 ¼ 0;�ev�B3 ¼ vþB3

ð15Þ

Equation (15) provides the first three of the six

equations needed in order to determine the six

unknown states in Eq. (6) just after the collision i

(viþx ; viþy ; viþz ;xiþ
x ;xiþ

y ;xiþ
z ). One obtains the last three

of the six equations by substituting the linear impulseRþ
�Fdt in Eq. (11) into Eq. (12) and taking the dot

product of the result with the unit vectors n1; n2; n3, to

get

vþB2 � v�B2 ¼ 2

3
RB xþ

1 � x�
1

	 

;�vþB1 þ v�B1

¼ 2

3
RB xþ

2 � x�
2

	 

; 0 ¼ xþ

3 � x�
3 ð16Þ

Collecting Eqs. (15) and (16), we obtain in matrix–

vector form the set of six linear algebraic equations

Fig. 4 Impulsive forces
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1 0 0

0 1 0
0

0
�1

0

0

1
0

0

1

0
0

0

0 �RB 0

RB 0 0
0

�2RB=3
0

0

0

0
�2RB=3

0

0

0
0

0

2
666664

3
777775

vþB1

vþB2

vþB3

xþ
1

xþ
2

xþ
3

2
6666664

3
7777775

¼

0

0
�ev�B3

v�B2 � 2RBx�
1 =3

�v�B1 � 2RBx�
2 =3

x�
3

2
666664

3
777775

ð17Þ

The solution of Eq. (17) yields the desired states. At

this point in the simulation, we return to the beginning

of the collision loop, advancing to the next trajectory

segment.

As mentioned in the introduction, the time-stepping

approach requires a considerable number of calcula-

tions. One calculates the nine states of the basketball at

each step along with checking collision conditions.

The event-driven approach developed in this section

eliminated the calculation of the nine states at each

time step.

3 Results

As mentioned, the purpose of the event-driven

approach is to reduce run time of general-purpose

solutions while retaining the exact mathematical

representations only previously available in simpler

problems. This section illustrates these capabilities

through examples. The initial conditions for the

examples are in Table 3. Also, note that the reader

can acquire these capabilities by reproducing the

examples—one after the other—by downloading the

code and running it with the initial conditions in

Table 3 [27].

Let us now begin by considering shots taken from

within the paint launched with little or no spin, called

floaters. Figure 5a–d show floaters launched from

2.438 m (8 feet) from the center of the ring. Figure 5a

shows the event-driven approach for contact with the

end-result surface. All of the trajectories end with the

ball either contacting the end-result surface, or reach-

ing the limit of the maximum number of allowable

contacts (which we set to 40). Figure 5b shows

consecutive contacts with the ring and then with the

end-result surface. Figure 5c shows contact with the

backboard and the end-result surfaces and Fig. 5d with

the rim, bridge, backboard, and end-result surfaces.

When using the event-driven approach, one predicts

Table 3 Initial conditions

x0þ y0þ z0þ v0þ
x v0þ

y v0þ
z x0þ

x x0þ
y x0þ

z

m m/s rad/s

Figure 5a 2.438

(8 ft)

0

0

- 0.6096

(- 2 ft)

- 2.8956

(- 9.5 ft/s)

0 4.8768

(16 ft/s)

0 0 0

Figure 5b 2.438

(8 ft)

0

0

- .6096

(- 2 ft)

3.0876

(- 10.13 ft/s)

0 4.8768

(16 ft/s)

0 0 0

Figure 5c 2.438

(8 ft)

0

0

- 0.6096

(- 2 ft)

- 11.5 0 4.8768

(16 ft/s)

0 0 0

Figure 5d 2.438

(8 ft)

0

0

- 0.6096

(- 2 ft)

- 2.7063

(- 8.879 ft/s)

0 4.8768

(16 ft/s)

0 0

Figure 6a .2286

(0.75 ft)

- .9144

(- 3.0 ft)

- 0.6096

(- 2 ft)

- 1.143

(- 3.75 ft/s)

1.4478

(4.75 ft/s)

4.2672

(14 ft/s)

0 0 0

Figure 6b 0.2286

(0.75 ft)

- 0.94488

(- 3.1 ft)

- 0.6096

(- 2 ft)

- .8382

(- 2.75 ft/s)

2.1336

(7 ft/s)

3.8557

(12.65 ft/s)

0 0 2

Figure 7 4.191

(13.75 ft)

0

0

- 0.6096

(- 2 ft)

- 4.4998

(- 14.763 ft/s)

0 5.5769

(18.297 ft/s)

0 6p 0
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the entire nonlinear trajectory of the ball without prior

knowledge of the sequence of collisions.

Figure 5a–d illustrated motion in the x–z plane

through the center of the hoop. Of course, the event-

driven approach is not limited to in-plane trajectories.

Figure 6a, b show two interesting out-of-plane cases.

Each is a layup taken from the left side. Figure 6a

shows a proper layup and Fig. 6b shows an improper

one. About the proper layup, notice it has a charac-

teristically high launch angle, that it contacts the

backboard once, and that the ball reaches the back-

board near the peak of its trajectory. About the

improper layup, notice that its initial direction is

toward the side of the ring with not enough arc. As

shown, the ball swirls around the ring. Although not

visible to the eye, the ball actually undergoes rapid and

Fig. 5 a Floater contacts the end-result surface, b the ring and the end-result surfaces, c the backboard and the end-result surfaces, and

d the ring, bridge, backboard, and end-result surfaces
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repeated contact with the ring. These results coincide

with those obtained analytically in [21].

Finally, we compare the run time of the event-

driven approach and the time stepping approach.

Comparisons that apply broadly have been performed

[22], but we considered a comparison that directly

relates to the dynamics of the basketball shot. We

illustrate that the run time of the event-driven

approach is lower than the run time of the time-

stepping approach. Toward this end, we considered the

trajectory of a ball that does not contact any surfaces

and one that contacts two surfaces because a large part

of the run time in the time-stepping approach can arise

from contact.

The calculations for the event–driven approach

used the MATLAB code [27] and the calculations for

the time-stepping approach used the MATLAB code

employed by Tran and Silverberg (2008). The run time

calculations given below did not include time for

graphing. We examined two representative trajecto-

ries—a successful swish free throw (not shown) and an

unsuccessful free throw that bounced off the ring, the

backboard, and then out (See Fig. 7). We determined

the run time in each trajectory by the event-driven

Fig. 6 a Proper layup and b Improper (swirling) layup

Fig. 7 Missed Free throw (contact with rim, backboard, and

end-result surfaces)

Table 4 Averaged run times for the event-driven approach

and the time-stepping approach

Approach Swish (Ti1)

(s)

Bouncing (Ti2)

(s)
100 Ti2�Ti1

Ti2

Event-driven (T1j) 0.0001 0.0027 96.3

Time-stepping

(T2j)

0.0109 0.0285 61.8

100ðT2j � T1jÞ=T2j 99.1 90.53
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approach and by the time-stepping approach. To

obtain run time accuracies out to three decimal places,

we ran each trajectory 100 times and averaged the run

times (Table 4). The standard deviations in the run

times were less than 10% of the averages. First, notice

that the run time for the bouncing case was much

longer than the run time for the swish case. In the

event-driven approach and the time-stepping approach

the run times of the bouncing case were respectively

25 and 3 times longer than in the swish case. Next,

notice that the run times in the event-driven approach

were shorter than in the time-stepping approach, in

both cases. In the swish case and in the bouncing case,

the run times when using the event-driven approach

were, respectively, 100 and 10 times shorter than when

using the time-stepping approach.

4 Discussion

The event-driven approach fills the gap between the

advantages of an exact formulation (typical of the period

between 1980 and 2000) and the computational power of the

approximate time-stepping approach (typical of the period

between 2000 and the present). Indeed, the event-driven

approach is both exact and faster than the time-stepping

approach. Millions of simulations are now faster and exact

because the run time of each trajectory was faster and exact.

In our benchmark comparison of run time between

the high performance approach and the traditional

time-stepping approach, we distinguished between

noncontact trajectories (swish or air ball) and contact

trajectories (all others). The distinction was important

because in many large data sets, a large percentage of

the trajectories are noncontact. We found that the

event-driven approach reduces the run times in the

noncontact trajectories by a factor of about 100. The

event-driven approach reduces the run times in the

contact trajectories by a factor of about 10.

The event-driven approach is applicable to more than

the sport of basketball. It applies to such sports as

baseball, soccer, and tennis. Aerodynamic drag

becomes significant depending on the speed, distance

of travel, and roughness of the surface of the primary

body. In basketball, one can neglect aerodynamic

effects, which simplified the determination of the

collision times between the ball and the secondary

surfaces. In order to expand the method developed in

this article to other sports, one would develop formulas

for collision times that account for aerodynamic effects.

5 Conclusion

This article presented a high performance (event-

driven) approach in support of the advancement of our

understanding of the basketball shot. The approach is

both fast (eliminating time stepping) and exact

(replacing approximate methods). It will be particu-

larly helpful when statistically analyzing the millions

of trajectories required in order to assess player shot

performance and shot type.

Author contributions L.M.S wrote the main manuscript text.

Both L.M.S and C.M.T. generated the results and prepared the

figures.

Funding The authors declare that no fund, grants, or other

support were received during the preparation of this manuscript.

Data availability The dataset analyzed during the current

study are available in Online Resource 1 [27].

Declarations

Competing interests The authors have no relevant financial

or non-financial interests to disclose.

References

1. Hobson, H.: Scientific Basketball. Prentice Hall, Engle-

wood Cliffs (1964)

2. Brancazio, P.J.: Physics of basketball. Am. J. Phys. 49,

356–365 (1981). https://doi.org/10.1119/1.12511

3. Tan, A., Miller, G.: Kinematics of the free throw in bas-

ketball. Am. J. Phys. 49, 542–544 (1981). https://doi.org/10.

1119/1.12668

4. Hamilton, G.R., Reinschmidt, C.: Optimal trajectory for the

basketball free throw. J. Sports Sci. 15, 491–504 (1997).

https://doi.org/10.1080/026404197367137

5. Mullineaux, D.R., Uhl, T.L.: Coordination-variability and

kinematics of misses versus swishes of basketball free

throws. J. Sports Sci. 28, 1017–1024 (2010). https://doi.org/

10.1080/02640414.2010.487872

6. Verhoeven, F.M., Newell, K.M.: Coordination and control

of posture and ball release in basketball free-throw shooting.

Hum. Mov. Sci. 49, 216–224 (2016). https://doi.org/10.

1016/j.humov.2016.07.007

7. Nakano, N., Fukashiro, S., Yoshioka, S.: The effect of

increased shooting distance on energy flow in basketball

123

L. M. Silverberg, C. M. Tran

https://doi.org/10.1119/1.12511
https://doi.org/10.1119/1.12668
https://doi.org/10.1119/1.12668
https://doi.org/10.1080/026404197367137
https://doi.org/10.1080/02640414.2010.487872
https://doi.org/10.1080/02640414.2010.487872
https://doi.org/10.1016/j.humov.2016.07.007
https://doi.org/10.1016/j.humov.2016.07.007


jump shot. Sports Biomech. 8, 366–381 (2020). https://doi.

org/10.1080/14763141.2018.1480728

8. Khlifa, R., Aouadi, R., Shephard, R., Chelly, M.S., Her-

massi, S., Gabbett, T.J.: Effects of a shoot training pro-

gramme with a reduced hoop diameter rim on free-throw

performance and kinematics in young basketball players.

J. Sports Sci. 31, 497–504 (2013). https://doi.org/10.1080/

02640414.2012.736634

9. Abdelrasoul, E., Mahmoud, I., Stergiou, P., Katz, L.: The

accuracy of a real time sensor in an instrumented basketball.

Proc. Eng. 112, 202–206 (2015). https://doi.org/10.1016/j.

proeng.2015.07.200

10. Straeten, M., Rajai, P., Ahamed, M.J.: Method and imple-

mentation of micro inertial measurement unit (IMU) in

sensing basketball dynamics. Sens. Actuat. A 293, 7–13

(2019). https://doi.org/10.1016/j.sna.2019.03.042

11. Przednowek, K., Krzeszowski, T., Przednowek, K.H.,

Lenik, P.: A system for analysing the basketball free throw

trajectory based on particle swarm optimization. Appl. Sci.

8, 2090 (2018). https://doi.org/10.3390/app8112090

12. Silverberg, L.M., Tran, C., Adcock, K.: Numerical analysis

of the basketball shot. J. Dyn. Sys. Meas. Control 125,

531–540 (2003). https://doi.org/10.1115/1.1636193

13. Shampine, L.F., Gladwell, I., Brankin, R.W.: Reliable

solution of special event location problems for ODEs. ACM

Trans. Math. Softw. (TOMS) 17(1), 11–25 (1991)

14. Huston, R.L., Grau, C.A.: Basketball shooting strategies—

the free throw, direct shot and layup. Sports Eng. 6, 49–64

(2003). https://doi.org/10.1007/BF02844160

15. Okubo, H., Hubbard, M.: Dynamics of the basketball shot

with application to the free throw. J. Sports Sci. 24,

1303–1314 (2006). https://doi.org/10.1080/

02640410500520401

16. Tran, C.M., Silverberg, L.M.: Optimal release conditions for

the free throw in men’s basketball. J. Sports Sci.26, 1147–1155

(2008). https://doi.org/10.1080/02640410802004948

17. Silverberg, L.M., Tran, C.M., Adams, T.M.: Optimal targets

for the bank shot in men’s basketball. J. Quant. Anal. Sports

(2011). https://doi.org/10.2202/1559-0410.1299

18. Covaci, A., Olivier, A.H., Multon, F.: Visual perspective

and feedback guidance for VR free-throw training. IEEE

Comput. Graph. Appl. 35, 55–65 (2015). https://doi.org/10.

1109/MCG.2015.95

19. Min, B.J.: Application of Monte Carlo simulations to

improve basketball shooting strategy. J. Korean Phys. Soc.

69, 1139–1143 (2016). https://doi.org/10.48550/arXiv.

1606.08145

20. Zhao, Y., Yang, R., Chevalier, G., Shah, R.C., Romijnders,

R.: Applying deep bidirectional LSTM and mixture density

network for basketball trajectory prediction. Optik 158,

266–272 (2018). https://doi.org/10.48550/arXiv.1708.

05824

21. Antali, M., Havas, V., Hogan, S.J.: Nonlinear dynamics of a

basketball rolling around the rim. Nonlinear Dyn. 104,

3013–3037 (2021). https://doi.org/10.1007/s11071-021-

06507-y

22. Dieci, L., Lopez, L.: A survey of numerical methods for

IVPs of ODEs with discontinuous right-hand side. J. Com-

put. Appl. Math. 236(16), 3967–3991 (2012)
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