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Interstellar space missions will require spacecraft that travel at relativistic speeds. Furthermore, their trajectories

will be influenced by gravitational sources. Accordingly, this paper applies to interstellar missions a recently

developed formulation of relativistic mechanics that predicts a spacecraft’s trajectory when it passes by a

gravitational source at a relativistic speed. The formulation, called spacetime impetus, is unique in that it employs

a relativistic universal law of gravitation that does not explicitly require general relativity while producing precisely

the same results. Based on these developments, an analyst can now update nonrelativistic mission planning codes to

give them general relativistic capabilities. It requires augmenting the code with relativistic velocities and relativistic

accelerations, the replacement of the universal law of gravitation with a relativistic universal law of gravitation, and

setting up Lorentz transformations between frames.

Nomenclature

A; T; rp; vp; e = semimajor axis, orbital period, perihelion
radius, perihelion velocity, and eccentricity

a; ar; aϕ = magnitude, radial component and azimuthal
component of acceleration

aR; aRr; aRϕ = magnitude, radial component, and azimuthal
component of relativistic acceleration

α; b; vb = for the general problem: entry angle, entry
point, and entry speed

a�r�; b�r�; u = relativistic corrections in potential energy and
force, and reciprocal of radial distance r

D;Δθ = for the general problem: distance of travel and
error in a calculated turn angle

dl; dxr = length increment and spatial coordinate incre-
ments (where r is equal to 1, 2, 3)

dt; dτ; γ = time increment, proper time increment, and
Lorentz factor

F;P = interaction force vector and action force
vector

grs; g
rs;Γt

rs = general relativity covariant metric coeffi-
cients, general relativity metric contravariant
coefficients, and Christoffel symbols

H, h, μ = relativistic angular momentum, specific rela-
tivistic angular momentum, and reducedmass

M, m, G, g = for the general problem: source mass, space-
craft mass, universal gravitational constant,
and acceleration due to gravity at the Earth’s
surface

M;MA; RS; RA = for specific orbital mechanics problems: mass
of the sun, mass of Alpha Centauri A, radius
of the sun, and radius of Alpha Centauri A

R;B; θ = for the general problem: initial distance,
impact parameter, and initial turn angle

r; v;a = position vector, velocity vector, and acceler-
ation vector

r; θ;ϕ; t = radial, polar, azimuthal, and time coordinates

rG; θG;ϕG; tG = radial, polar, azimuthal, and time coordinates
for general relativity

rs; c = Schwarzschild radius and speed of light
T, V, E, L = kinetic energy, potential energy, total energy,

and Lagrangian
v; vr; vϕ = magnitude, radial component and azimuthal

component of velocity
vR;aR = relativistic velocity and acceleration vectors
vR; vRr; vRϕ = magnitude, radial component and azimuthal

component of relativistic velocity
θf; tf = for the general problem: flyby turn angle at a

final time and flyby final time
ψ ;ψR = acceleration angle and relativistic acceleration

angle

I. Introduction

I NTERSTELLAR missions that reach their destinations within a
generation will require spacecraft that navigate across the cosmos

at relativistic speeds. The planning for these missions will require
simulation software that performs mission design tradeoff studies,
energy and cost budgeting, astronavigation optimization, etc. In
terms of the underlying physics, these codes will have to predict a
spacecraft’s relativistic trajectory as it passes by a gravitational
source. This paper applies a new relativistic formulation of mechan-
ics that can greatly simplify these predictions.
Interstellar missions are challenging primarily because of the

distance of travel. Alpha Centauri, which is the star system that is
closest to us and potentially habitable, is 4.3 light-years from our
solar system (which is 268,000AU, anAUbeing an astronomical unit
equal to the distance between the sun and Earth). This is about 10,000
times larger than the size of our solar system (29.8 AU). The optimal
interstellar mission begins with an acceleration phase that reaches a
relativistic speed followed by a cruise phase. To get a sense of this,
after a constant acceleration of 25 g’s for about 2 days, a probe
reaches a cruising speed of 0.15c when leaving the solar system.
With that cruise speed, the probe reaches Alpha Centauri in about
30 years.
A number of propulsion systems are promising (e.g., electric

propulsion [1], fission electric [2], and magnetic sails [3]), albeit
electric propulsion, by itself, cannot increase the speed of a probe
beyond 0.15c. The feasibility of solar sail stability has been verified
with a modest level of tensioning [4], methods of damage control
from interstellar gas and dust have been suggested [5], and a system
of multilayered materials has been proposed [6]. The nuclear laser
pulse, in particular, does not require onboard fuel [7]. NASA has
sponsored a number of feasibility studies, notably one by the Break-
through Starshot Initiative [8], which is a laser-accelerated sailcraft.
That study developed a relativistic model for straight motion under
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huge accelerations (order of 2500 g’s) cruising at 0.2c after a 40 min
acceleration phase over a distance of about 0.5 AU. That work
examined a 0.01c precursor mission followed by the 0.2c mission.
The accurate prediction of the interstellar trajectory’s target depends
on launch variabilities and gravitational effects during the journey
[9]. Parkin [8] also raised the possibility that the risk from the
bombardment of interstellar dust might necessitate sending a con-
stellation of probes. A similar relativistic model was conducted for a
sail that is only partially reflective [10]. That study also assumed that
the motion is straight. They raised the future need to address
“ : : : telecommunication and astronavigation issues which must take
into account several effects from general relativity,” which result
from the bending of the trajectory of a spacecraft and of light when
passing by a gravitational source.
Understanding the impact properties of interstellar dust comes from

in situ space experiments and models that balance the dust emission
and extinction mechanism. The dust size and distribution [11,12] are
most readily observable from the data. Predicting mass properties,
which is critical to understanding the imposed stresses on a spacecraft,
requires the difficult task of identifying dust species (e.g., [13,14]). As
our understanding of the mass distribution continues to be studied, the
need to plan for missions that avoid some dust bands seems certain.
TheParkerSolar Probe [15],which is currently orbitingclose to the sun
in a highly eccentric orbit, provides the most recent opportunity to
examine the emission–extinction dustmechanism, and it also offers an
opportunity tomeasure general relativistic effects on a spacecraft [16].
We estimated that the gravitational precession of the Parker Solar
Probe orbit is 10 times greater thanMercury’s gravitational precession,
while Mercury’s gravitational precession is greater than any other
planet in our solar system (Appendix B).
The prediction of the trajectory of a spacecraft when it passes by a

gravitational source is primarily a two-body problem of gravitational
attraction between one massive, nonrotating, isotropic, uncharged
body (the source) and a comparatively low-mass spacecraft. Trajec-
tory changes range froma small perturbation in direction and speed of
travel, a flyby, and an orbital insertion to a crash into the gravitational
source. Analysts find these problems difficult to model because they
require general relativity (GR), but also because GR is typically
beyond the analyst’s capabilities. The new relativistic mechanics
formulation presented in this paper can treat these problems in a
manner that avoids many of the present difficulties.
The new formulation is relativistic, and so it requires some rela-

tivistic notions but not those associated with GR. The new formu-
lation is based on the theory of spacetime impetus (SI) [17].
Spacetime impetus uniquely bridges the gap between the Newtonian
theory (NT), the theory of special relativity (SR), and GR. The SI
connection to NT, SR, and GR is as follows: pertaining to NT, SI
introduced a relativistic universal law of gravitation that originates
with the universal law of gravitation in NT; pertaining to SR, SI
employs the spacetime metric in SR; and pertaining to GR, the SI
predictions are in full agreement with the Schwarzschild solution
fromGR. To implement SI, the mission analyst will need to convert a
nonrelativistic formulation into a relativistic formulation. One codes
the changes in a patched conic method or in any other such trajectory
simulation and optimization code segments, where it would need to
be augmented with relativistic velocities and relativistic accelera-
tions, replace the universal law of gravitation with the relativistic
universal law of gravitation, and set up Lorentz transformations
between reference frames.
The following material is original and being presented here for the

first time:
1) Nonexpert treatment: The paper was written for nonexperts in

general relativistic mechanics.
2) The relativity triangle: We developed here a geometric inter-

pretation of the relationship between relativistic acceleration and
nonrelativistic acceleration, which turns out to take on the geometric
form of a triangle (Sec. III). The added insight can assist the analyst.
3) Relativistic orbital mechanics: We present here four illustrative

problems (three for spacecraft and one for light) (Sec. V).
4) Analytical verification: We provide here a discussion that

motivated the advent of the relativistic universal law of gravitation.

We then explain why the new SI formulation and GR generate the
same trajectories. A rigorous derivation introduces the mathematical
mapping between SI and GR, from which one proves that the SI
governing equations and GR governing equations are in full agree-
ment (Appendix A).
5) Numerical verification:We examine the orbit of the Parker Solar

Probe around the sun, in particular its precession. We solve the
problem by SI andGR. This problem serves as a nice tutorial problem
for thosewho seek to program the SImethodology. The code has also
been made available [30].
The next three sections are preliminary; they review the concepts

of relativistic velocity and relativistic acceleration, develop the rela-
tivity triangle and the relativistic gravitational law, and ultimately
describe the governing equations of motion. The section after that
solves the four illustrative relativistic orbital mechanics problems.
The body of the paper ends with a summary of the results.

II. Relativistic Velocity and Relativistic Acceleration

We begin by reviewing the concepts of relativistic velocity and
relativistic acceleration (see Appendix A for more details of the
following mathematical developments) [18]. In the nonrelativistic
framework, the spatial distance increment dl between two points is
constant across frames and is expressed mathematically by dl2 �
dr ⋅ dr, wheredr is an increment of the corresponding positionvector
between the points. The equation dl2 � dr ⋅ dr is referred to as the
spatial metric (invariant). Relativistic changes and nonrelativistic
changes differ because relativistic changes account for the principle
of light, and nonrelativistic changes do not. In accordance with the
principle of light, one calibrates time measurement in a frame of
reference relative to the speed of light. The speed of light is the same
in each frame, which leads to relativistic differences across frames
between spatial coordinates and temporal coordinates. Across
frames, one holds constant a so-called proper time increment dτ,
expressed mathematically by

c2dτ2 � c2dt2 − dl2 (1)

Equation (1) is referred to as the spacetime or Minkowski metric
(invariant). It replaces the spatial metric employed in nonrelativistic
problems. Dividing Eq. (1) by dt2 yields c2 ≥ v2, where
v � �dl∕dt�, which states that the speed of a body does not exceed
the limiting value of c. One can also deduce from Eq. (1) that the
speed c of light is the same across frames in accordance with the
originally stated principle.
When invoking the principle of light, one defines the relativistic

velocity vector vR and the relativistic acceleration vector aR as

vR � dr

dτ
(2a)

aR � dvR
dτ

(2b)

Notice in Eq. (2) that the difference between these relativistic quan-
tities and their nonrelativistic counterparts, v � �dr∕dt� and
a � �dv∕dt�, is that the rate of change is with respect to proper time
instead of time. Let us now see how these relativistic quantities are
related to their corresponding nonrelativistic quantities. Toward this
end, we define the ratio of the time increment and the proper time
increment as the Lorentz factor γ � �dt∕dτ�. From Eq. (1),

γ � 1∕ 1 − �v∕c�2, where v � v ⋅ v
p

is the magnitude of the non-
relativistic velocity vector v. It follows by differentiation that the
relativistic velocity vector and the relativistic acceleration vector in
Eq. (2) are related to their nonrelativistic counterparts by

vR � γv (3a)

aR � γ2 a� γ2

c2
�a ⋅ v�v (3b)
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where a ⋅ v � a1v1 � a2v2 � a3v3. Clearly, γ ≅ 1 when v ≪ c,
which corresponds to the nonrelativistic case. It also follows that
the relativistic velocity vector and the relativistic acceleration vector
in Eq. (3) reduce to their nonrelativistic counterparts when v ≪ c.

III. Relativity Triangle

We now develop a geometric interpretation of the relativistic
acceleration vector in relation to the nonrelativistic acceleration
vector. The geometric interpretation has some value in that it further
assists the mission planner in understanding relativistic acceleration
and in assessing the bending of the trajectory of a spacecraft when it
passes by a gravitational source. Equation (3b) gives the relativistic
acceleration vector in terms of nonrelativistic quantities: the non-
relativistic velocity vector and the nonrelativistic acceleration vector.
Oneobtains the inverse relationship by first recognizing fromEq. (3b)
that v ⋅ a � �1∕γ4��v ⋅ aR�. Substituting this back into Eq. (3b) and
solving for a

a � 1

γ2
aR −

1

c2
�v ⋅ aR�v (4)

Given that the nonrelativistic acceleration vector is a linear combi-
nation of the relativistic acceleration vector and the velocity vector, it
follows at any given instant of time that the nonrelativistic acceler-
ation vector, the velocity vector, and the relativistic acceleration
vector lie in one plane. Without any loss of generality, we shall refer
to it as the x–y plane, let the velocity vector act in the x direction, and
then rewrite the nonrelativistic acceleration vector as

ax

ay
� 1 −

v

c

2 aRx

aRy
−

1

c2
v

0

v

0
⋅

aRx

aRy

(5)

Next, we express the nonrelativistic acceleration vector and the
relativistic acceleration vector as magnitudes multiplied by unit
vectors as

ax

ay
� a

cos�ψ�
sin�ψ�

;
aRx

aRy
� aR

cos�ψR�
sin�ψR�

where a � �a2x � a2y�1∕2, aR � �a2Rx � a2Ry�1∕2, ψR is the angle from
the velocity vector to the relativistic acceleration vector, and ψ is the
angle from the velocity vector to the nonrelativistic acceleration
vector, as shown in Fig. 1. Substitute these expressions into Eq. (5)
to get

a
cos�ψ�
sin�ψ�

� 1 −
v

c

2

−
1

c2
aRv cos�ψR�

v

0

� aR
cos�ψR�
sin�ψR�

Finally, dividing by 1 − �v∕c�2 and rearranging terms yield

cos�ψR�
sin�ψR�

� v

c

2

cos�ψR�
1

0
� a

aR�1 − �v∕c�2�
cos�ψ�
sin�ψ�

(6)

Equation (6) expresses the unit vector that aligns with the relativ-
istic acceleration vector as the sum of a vector of magnitude
�v∕c�2 cos�ψR� that aligns with the velocity vector and a vector that
aligns with the nonrelativistic acceleration vector. The triangles
shown in Fig. 1 give the geometric interpretation of Eq. (6).
First, consider the top triangle. Imagine that spacecraft b is located

at the bottom left vertex at an instant of time. Next, at that instant of
time, imagine that a source (not shown) is located at some point along

the line that passes through the bottom left vertex and the top vertex.
One might imagine that the source is the sun. The field of the sun
produces a force vector F that acts on the spacecraft directed along
that line. Furthermore, from the relativistic version of Newton’s
second lawF � maR (line 4 of Table 1), we know that the relativistic
accelerationvectoraR of the spacecraft is directed along that line, too.
The base of the triangle is along the line of the spacecraft’s velocity
vector v. Notice that the base’s length varies from 0 when v � 0 to
cos�ψR� when v � c. Finally, the right line is along the line of the
spacecraft’s nonrelativistic acceleration vector a.
Figures 1a–1c depict this situation over a range of speeds. The

bottom left vertices of the three triangles correspond to the spacecraft,
represented by dots moving to the right at low, medium, and high
speeds. The sun (still not shown) is located at an arbitrary point along
the line that passes through the line of aR. In Fig. 1a, the spacecraft
moves slowly compared to the speed of light. As shown,a andaR are
almost aligned. Figure 1b shows an intermediate case. In Fig. 1c, the
speed of the spacecraft is equal to the speed of light. As shown, a and
v are perpendicular.
From Eq. (3), we also find that

tan�ψ� � 1

1 − �v∕c�2 tan�ψR� (7)

In Eq. (7), we see that the nonrelativistic acceleration angle ψ
depends only on the relativistic acceleration angle ψR and the space-
craft’s speed v. Figure 2 shows the nonrelativistic acceleration angle
ψ as a function of v∕c for different relativistic acceleration angles:
ψR � 0; 15; 30; 45; 60; 75, and 90 deg. Notice that the nonrelativistic
acceleration angle at v � 0 is equal to the relativistic acceleration
angle, and that the nonrelativistic acceleration angle increases with v
until it reaches 90 deg when v � c.
The relativity triangle describes the kinematic behavior of the

spacecraft.We see that its nonrelativistic accelerationvectora rotates
until it becomes perpendicular to its velocity vector v as the speed v
reaches the light limit. This prevents the spacecraft’s speed from
exceeding the light limit. But, importantly, the acceleration is not zero
at the light limit, which is responsible for allowing the spacecraft’s
trajectory to bend even as the speed approaches the light limit.
We now turn to the governing equations that we will later use to

solve four relativistic orbital mechanics problems.

IV. Governing Equations

Over the course of history, two observations of physical behavior
have withstood the test of time as transcending circumstance and
grew into foundational principles: the principle of light and the
principle of impetus. The principle of light, which is a kinematic
principle, was described briefly in Sec. II. The principle of impetus is
a kinetic principle. It is the intuitive idea that a body’s movement, in

a) b) c)
Fig. 1 Relativity triangle.
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the absence of influences from other bodies, is constant over time in
both magnitude and direction. In NT, the influences referred to in the
principle of impetus are forces that are expressed mathematically by
F � ma, and in SR and SI the forces are expressed mathematically
by F � maR. The interpretation of impetus in NT does not account
for the principle of light; for sufficiently large forces, it erroneously
predicts speeds that exceed c. The interpretation of impetus in SR
only partially accounts for the principle of light; it does not account
for the bending of the trajectory of a body when passing by a
gravitational source. In fact, in Eddington’s famous experiment
measuring light bending around the surface of the sun, the prediction
in NT is half of the observed value, while in SR the prediction is that
there is no light bending at all. General relativity overcame these
limitations by introducing the concept of curved spacetime, wherein
gravity dictates spacetime’s curvature. In GR, the curvature of space-
time produced the influence that changes a body’s or light’s move-
ment instead of a force producing the influence.
Historically, the modeling of gravitational influence through a

curvature of spacetime instead of through a gravitational force, along
with the inability of SR to correctly account for the principle of light
with a gravitational force, suggested that the concept of gravitational
forcemight be deficient at relativistic speeds but no definitive answer
was known one way or the other. With different curved spacetime
coordinate systems, it was shown that the singularity at the Schwarzs-
child radius that appears in his general relativity solution [25] could
be removed [26–29]. This raised the question of the “physical”
interpretation of the singularity and more generally the possibility
that spacetime is not necessarily curved. Other theoretical connec-
tions between curved spacetime and ordinary spacetime arose

[23,24]. They, too, left open the possibility that the deficiency in
the gravitational force at relativistic speeds might be correctable. The
Einstein–Infeld–Hoffman equations produced a relativistic gravita-
tional force from GR under the assumption of a so-called post-
Newtonian expansion that is valid for bodies traveling at speeds that
are small compared to the speed of light [19]. More recently, Ziefle
applied gravitons in a Newtonian framework to approximate gravi-
tational forces for different two-body problems, expressed as F �
GSMm∕r2 in which GS is a variable gravitational constant. With
gravitons, he reproduced the well-known result that GS � 2G in
agreement with GR for a photon passing by a gravitational source
and found thatGS � �1� π�v∕c�2�G for the anomalous precession of
Mercury [20]. In 2020, the authors of this paper introduceda relativistic
correction to the universal lawof gravitation for the two-body problem,
whose solution agreed numerically with the Schwarzschild solution
out to at least three decimal places [21] and in 2021 introduced the
Theory of SI [17]. In Appendix A, we give a detailed mathematical
proof that the SI solution to the two-body problem is identical to the
GRsolution discovered bySchwarzschild, confirming that the numeri-
cal results earlier obtained were exact.
In the two-bodyproblem,we consider a plane containing a stationary

gravitational sourceofmassM and another bodyofmassm travelingby
the gravitational source. The relativistic universal lawof gravitation and
the relativistic principle of impetus that SI introduces are

F � − 1� 3
vRϕ
c

2 GMm

r3
r (8a)

F � maR (8b)

In Eq. (8), r � �x; y� is the position vector from the gravitational
source to the mass center of the spacecraft, and r � jrj is distance.
The term 1� 3�vRϕ∕c�2 is the relativistic correction to the “non-
relativistic” universal law of gravitation, in which vRϕ � �1∕r�
�−vRxy� vRyx� is the azimuthal component of the spacecraft mass
center’s relativistic velocity vector vR. Note that the azimuthal com-
ponent vRϕ of the relativistic velocity vector can be expressed as a
radially dependent function using the system’s angular momentum.
The end of Sec. 2 in Appendix A shows this. Appendix A also proves
the full agreement of SI and GR. The SI governing equations that we
will apply in this paper are given in Table 1.
Table 1 gives the equations that we will need and makes it clear

how the governing equations apply to SI, SR, and NT. As shown, the
SR formulation employs lines 3 to 5 but did not treat the influence of a
gravitational source (lines 1 and 2). Spacetime impetus employs lines
3 to 5, too, plus it introduces the new relativistic universal law of
gravitation (lines 1 and 2). The relativistic potential energy of the
gravitational source in SI differs from the nonrelativistic potential
energy in NT by the relativistic correction a�r� � 1� �vRϕ∕c�2.
The relativistic correction for the gravitational force in line 2 is

Table 1 Governing relationships

Quantity Mathematical expression SI SR NTa

1 Relativistic potential energy
V � −

GMm

r
1� vRϕ

c

2

,

p
×

p

vRϕ � γ

r
�−vxy� vyx�

γ � 1∕ �1 − �v∕c�2
2 Gravitational force vector

F � −
GMm

r3
r 1� 3

vRϕ
c

2
p

×
p

3 Relativistic kinetic energy
T � 1

2
mv2R

p p p

4 Impetus F � maR

p p p
5 Nonrelativistic acceleration

a � 1

γ2
aR −

1

c2
�v ⋅ aR�v

p p p

aNT invokes the given quantities without its relativistic terms.

Fig. 2 Nonrelativistic acceleration angle ψ vs v∕c for different relativ-
istic acceleration angles: ψR � 0;15;30;45;60;75, and 90 deg.
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b�r� � 1� 3�vRϕ∕c�2. The relativistic law of impetus F � maR,
which both SI and SR employ, differs from the law of impetus
employed by NT that uses the nonrelativistic acceleration vector. In
Table 1, The Newtonian theory employs all of the expressions as SI
does but ismissing the nonrelativistic parts because it does not invoke
the principle of light.

V. Relativistic Orbital Mechanics

We are now ready to examine the problem of a spacecraft passing
by a stationary gravitational source at a relativistic speed,with a focus
on interstellar travel. When are the changes in the speed and/or
direction of a spacecraft as it passes by a gravitational source signifi-
cant? What are the accelerations acting on the spacecraft during a
turn? At what distances from a gravitational source are the effects on
an interstellar spacecraft negligible, and at what distances could an
interstellar spacecraft be captured by a star? As it pertains to tele-
communications, what levels of light bending can one expect?
Indeed, we will also demonstrate that our formulation treats light
bending, too.
For the purposes of interstellar travel, we will consider spacecraft

traveling at speeds between 0.1c and 0.2c and light traveling at c.
Also, we will consider analytical and numerical approaches. These
problems can be cast in the form of just one general problem. The
general problem is of a body, a spacecraft or a photon of light, that is
initially located at pointa, a distanceR from a stationary gravitational
source, and initially traveling at speed v at turn angle θ relative to the
line between the body and the source. The perpendicular distantB �
R sin�θ� is called the impact parameter. The impact parameter is 0
when the body is initially traveling in the radial direction. When
solving this problem analytically, we can additionally construct a
circle of radius r around the source. At some point in the motion, the
body may intersect that circle at entry point b. At entry point b, we
will be able to determine analytically the entry speed vb of the body
and the entry angle α that the trajectory makes relative to the tangent
of the circle (see Fig. 3).
The radius of the circle is arbitrary; we could set it to a value that is

very close or far from the source. The analytical procedure for finding
the entry speed vb and the angle α is outlined in Table 2.
The procedure draws on conservation of relativistic energy and

relativistic angular momentum about the source point. Column 1
gives the needed expressions from which column 2 solves for an
unknown evaluated at point b in the expression to the left of it. Line 1

of column 1 gives the two governing relativistic conservation equa-
tions from which line 1 of column 2 determines the kinetic energy at
point b, recognizing thatE � T � V for theT andV given in Table 1.
Line 2 of column 1 gives the relativistic kinetic energy from which
line 2 of column 2 determines the speed at b. Line 3 of column 1 gives
the relativistic angular momentum from which line 3 of column 2
determines the azimuthal component of velocity vbϕ at point b.
Finally, we determine the entry angle α from cos α � vbϕ∕vb. These
analytical solutions are not complete; they do not determine the
location of entry point b. One must determine the location of entry
point b by numerically integrating the nonrelativistic acceleration to
find the full trajectory. Appendix B gives a case study that shows how
to solve this general problem numerically.
Next, we solve four illustrative problems.

A. Relativistic Gravitational Flyby of a Spacecraft

We begin by considering the relativistic gravitational flyby of a
spacecraft as it passes by Alpha Centauri A. Alpha Centauri A’s mass
isMA � 1.1M, whereM is the sun’smass. Its radius isRA � 1.22RS,
where the sun’s radius is RS (see Table 3).
Figure 4 shows a typical relativistic flyby.As shown, the spacecraft

is initially located at (x1�0�, x2�0��, where its speed is v�0� to the left.
After a time tf, the turn or trajectory angle becomes θf � θ�tf�. The
results are given in Table 4 for the nine cases we examined. The
results were obtained by numerically integrating the expression for
the nonrelativistic acceleration vector in Table 1; see Appendix B for
a tutorial on the solution steps. In each case, the spacecraft is initially
20RA from the source in the x1 direction. For cases 1 and 2, the initial
speed is 0.2c and the lateral offsets in the x2 direction are 20RA and
10RA, respectively. For cases 3 to 9 the lateral offset is 5RA and the
initial speeds range from 0.001c to 0.7c.We determined for each case
the angles θf that the spacecraft turns as predicted by SI and SR and
the error and percentage error between them.Note that because SI and
GR transform to the same governing equations (Appendix A), the SI

Fig. 3 General problem setup.

Table 2 Angular momentum and energy

1 2

1 Ha � Hb; Ea � Eb Tb � Ta � Va − Vb

2
T �

1
2
mv2

1 − �v∕c�2 vb � c
2Tb

mc2 � 2Tb

3 H � mrvϕ

1 − �v∕c�2 vbϕ � Hb

mrb
1 − �vb∕c�2

cos α � vbϕ∕vb

Table 3 Sun and Alpha Centauri A data

Sun Alpha Centauri A

Mass M 1.989 × 1030 kg MA 2.188 × 1030 kg

Radius RS 696,000,000 m RA 849,120,000 m

Schwarzschild radius rS 2,970 m rA 3,267 m

Other

Universal gravitational
constant

G 6.674 × 10−11 m3∕kg ⋅ s2

Speed of light c 2.99 × 108 m∕s

Fig. 4 Spacecraft passes by Alpha Centauri A.
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results agree exactly with the GR results (column 4 in Table 4). As a
numerical check, we verified this agreement, although it was unnec-
essary to explicitly include the GR results in the tables and figures.
The closest approach to Alpha Centauri A in the problems treated as
follows is about 5RA, which for reference is close to half of the Parker
probe’s closest approach to the sun of about 9.8RS (see Appendix B).
In case 1, the errorΔθ in the SR prediction of the turn angle θf is the
smallest among the cases treated; it is about 0.00002 deg. Although
very small, it quickly results in large errors in lateral directions
relative to the SR predictions. In case 1, the spacecraft is initially
traveling at 0.2c, and so 5 s after passing Alpha Centauri A, the SR
error results in a lateral error ofDΔθ ≅ 7 km, whereD is distance of
travel. In a return-to-Earth scenario, the lateral error would become
DΔθ ≅ 15 AU, which is about the span of our solar system.
For cases 3 through 9, Fig. 5 shows a log–log plot of the turn angles

θf vs v∕c. In the log–log plot, the relationship is close to linear, which
corresponds to a nearly inverse-square dependence (slope of −2)
between the turn angle and v∕c.

Next, we examine the relativistic accelerations during the turns.
Per line 4 in Table 1, the gravitational force on the spacecraft is equal
to the spacecraft’smassmultiplied by its relativistic acceleration. The
relativistic accelerations predicted by SI and SR are given in Table 5
for the same previously considered cases 1 through 9.
Notice that the relativistic accelerations are given in Earth g’s

(9.8 m∕s2). Cases 1 and 2 fly by the source at the largest distances
from the source from among the cases considered, and their peak
g’s are the smallest (on the order of 5–20%). The peak g’s in cases 3
through 9 differ by their initial speeds. The cases increase in initial
speed to 0.7c, and their g’s increase from about 1.5 to 3.2. Notice
from case 3 to case 4 that there is a dip in the g’s. One expects this dip
because of two competing trends. When the initial speed is suffi-
ciently small, the trajectory will turn toward the source and experi-
ence a high peak acceleration when passing by the source. On the
other hand, when the initial speed becomes sufficiently high, the least
distance between the source and the spacecraft approaches the initial
offset, at which point further increases in speed cause a correspond-
ing increase in g’s. We also see this in the log–log plot of the turn
angle (Fig. 5), which shows that the turn angle decreases in an almost
inverse square proportion to speed. Finally, note that the dynamic
stresses that act on the vehicle when it passes a gravitational source
are not proportional to the accelerations and resulting peak loading;
dynamic stresses result from the gravity gradients, which are consid-
erably smaller.

B. Relativistic Circular Orbits of a Spacecraft

In this problem, we determine the speeds of a family of circular
orbits of a spacecraft around a stationary gravitational source. The
family of circular orbits gives a general sense of the relationship
between the radius and the speed of an orbit. The Newtonian theory
and SR predict that there is no limit to how small the radius of a stable
circular orbit can be; both differ from general relativistic mechanics
(SI and GR), which predict the well-known nonzero lower limit
radius of a circular orbit, below which a circular orbit is unstable.

Table 4 Turn angle for SI and SR

x2�0� v∕c tf , s θ�tf� �SI�,a deg θ�tf� (SR), deg Δθ, deg Difference, %

1 20RA 0.2 3,000 2.458157 × 10−4 2.250536 × 10−4 2.076 × 10−5 8.5

2 10RA 0.2 3,000 5.444575 × 10−4 5.007283 × 10−4 4.373 × 10−5 8.0

3 5RA 0.001 300,000 45.424094 45.423908 1.863 × 10−4 <0.00

4 5RA 0.01 30,000 4.343358 × 10−1 4.342469 × 10−1 8.883 × 10−5 0.02

5 5RA 0.1 3,000 4.383648 × 10−3 4.383648 × 10−3 8.812 × 10−5 2.0

6 5RA 0.2 1,500 1.129445 × 10−3 1.041333 × 10−3 8.811 × 10−5 7.8

7 5RA 0.3 900 5.267065 × 10−4 4.385956 × 10−4 8.811 × 10−5 16.7

8 5RA 0.5 500 2.182122 × 10−4 1.301010 × 10−4 8.811 × 10−5 40.4

9 5RA 0.7 400 1.333080 × 10−4 4.515249 × 10−5 8.799 × 10−5 66.0

aThe results in this column agree with GR.

Fig. 5 Turn angle vs v∕c (SI cases 3 to 9).

Table 5 Peak relativistic accelerations (in Earth g’s) for SI and SR

x2 �0� v∕c tf , s aRmax∕g �SI�a aRmax∕g (SR) ΔaRmax∕g Difference, %

1 20RA 0.2 3,000 0.058 0.052 0.006 10.3

2 10RA 0.2 3,000 0.232 0.207 0.025 10.8

3 5RA 0.001 300,000 1.541 1.541 1.1 × 10–5 0.0

4 5RA 0.01 30,000 0.832 0.832 2.5 × 10–4 0.0

5 5RA 0.1 3,000 0.852 0.827 0.025 2.9

6 5RA 0.2 1,500 0.930 0.827 0.103 11.1

7 5RA 0.3 900 1.072 0.827 0.245 22.9

8 5RA 0.5 500 1.653 0.827 0.827 50.0

9 5RA 0.7 400 3.209 0.826 2.383 74.3

aThe results in this column agree with GR.
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For the purposes of comparison and general interest, Table 6 gives the
development of the NT, SR, and SI solutions.
Line 1 gives the gravitational force vector and the nonrelativistic

accelerations for SI, SR, and NT. Line 2 determines r _ϕ2 from line 1

for SI and NT, and line 3 determines r _ϕ2 from line 1 for SR. Line 4
determines the circular-orbit tangential velocity (speed) for SI, SR,
and NT in terms of the Schwarzschild radius rs � �2GM∕c2�. Here,
it is interesting to glimpsewhere the Schwarzschild radius singularity
1 − �rs∕r� first appears in SI. In SI, it first appears in line 4, and inGR
it is found in the Schwarzschild metric itself. Table 7 shows the
predictions by SI, SR, and NT for five noteworthy cases.
The SI solution in case 1 is the radius r � 1.5rs of thewell-known

photon sphere predicted by GR. As shown, SR predicts a circular
orbit only at the origin for a speed of c, while NT predicts a circular
orbit at r � 0.5rs at the speed c of light. Of course, only one of these
results can be correct, and that result is predicted by SI in agreement
withGR. The SI solution in case 2 is thewell-known transition radius
below which a circular orbit is unstable and above which the circular
orbit is stable [22]. Cases 3 and 4 correspond to a range of speeds that
many believe will be typical of interstellar cruise. Case 5 is suffi-
ciently slow that the relativistic correction is in the fourth significant
figure.

C. Relativistic Gravitational Orbital Insertion

We now consider a spacecraft that is inserted into an orbit, in
particular, an example in which the spacecraft crashes into Alpha
Centauri A’s surface (using the term “surface” only loosely). Refer-
ring to Fig. 3, we set the initial position to (5RA; 0) with an initial
speed of va � 0.001c at an angle of θ � 20 deg, and we let r � RA

(Table 8). We numerically solve this problem from the SI governing
equations in line 4 of Table 1 by expressing the nonrelativistic
acceleration in line 5 in terms of the relativistic gravitational force in
line 2.We also analytically solve this problem to find the entry velocity
and angle by following the procedure that Table 2 outlines. Of course,

bothmethods produce the same results.When reaching the surface,we
determined that the spacecraft’s speed is 0.002c, where its entry angle
is 32.1 deg (Table 8; Fig. 6). Initially, the nonrelativistic acceleration
angle and the relativistic acceleration angle were ψ � 20 deg and
ψR � 20 deg, respectively (no difference in the second significant
figure). When reaching the surface of Alpha Centauri A, they were
ψ � 57.5 deg and ψR � 57.3 deg, respectively. Because of the
speed being small in comparison to c, its doubling during the approach
caused only a slight increase in the difference between the nonrelativ-
istic and relativistic acceleration angles.More generally, the spacecraft
only reaches relativistic speeds when its proximity to the center of the
source approaches the Schwarzschild radius.

D. Grazing of Light Past a Gravitational Body

The problem of light grazing is identical to the spacecraft problem
of a relativistic flyby, the difference being in the orders of magnitude
of the speeds. Both problems employ the same equations. The mass of

Table 6 Velocity calculations for circular orbits

Line 1 SI (and SR for b � 1) NT

Fa � Fr

Fϕ
� −

GMm

r3
b�r� r

0
� m

aRr
aRϕ

Fa � Fr

Fϕ
� − GMm

r3
r
0

aa � �r − r _ϕ2

r �ϕ� 2_r _ϕ
� −r _ϕ2

0

� 1

γ2
1 − �vr∕c�2 −�vr∕c��vϕ∕c�

−�vr∕c��vϕ∕c� 1 − �vϕ∕c�2
aRr

aRϕ

aa � �r − r _ϕ2

r �ϕ� 2_r _ϕ

� −r _ϕ2

0
� 1

m

Fr

Fϕ

Line 2 SI NT

−r _ϕ2 � −
GMr

r3
1 −

r _ϕ

c

2

� 3
mr2 _ϕ

mc

2 1

r2
−r _ϕ2 � −

GMr

r3

Line 3 SR (SI for b � 1)

r _ϕ2 � −
GMr

r3
1 −

r _ϕ

c

2

Line 4 SI SR (SI for b � 1) NT

vϕ
c

� 1

2

rs
r

1 − rs
r

vϕ
c

�
rs
r

2� rs
r

vϕ
c

� 1

2

rs
r

Table 7 Five circular orbits

vϕ
c

r

rs

SI r

rs

SR r

rs

NT

1 1 1.5 0 0.5
2 0.5 3 1.5 2
3 0.2 13.5 12 12.5
4 0.1 51 49.5 50
5 0.01 5001 4999.5 5000

Table 8 Relativistic
gravitational entry

Parameters Values

r RA

R 5RA

va 0.001c

θ 20 deg

vb 0.002c

α 32.1 deg

Fig. 6 Relativistic gravitational entry.
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the light photon is extremely small, but it drops out of the equations,
and so this has no effect on the solution. As in the first problem, we
shall here again take the source to be Alpha Centauri A. Recall that the
parameters were given in Table 3 and that Fig. 4 shows a typical
relativistic flyby. Again, we solved the problem both numerically
and analytically. The results in Tables 9 and 10 are for the six cases
we examined.
In each case, the light photon is initially 40RA from the source

in the x1 direction, laterally offset by 5RA (cases 1 to 3) and by RA

(cases 4 to 6) in the x2 direction and traveling in the –x1 direction at
speeds approaching c.We determined for each case the angles θf that
the light bends as predicted by SI. Again, because SI and GR trans-
form to the same governing equations (Appendix A), the SI results
agree exactly with the GR results and became unnecessary to include
in the tables and figures. The initial speeds of the light photons were
between v � 0.999c and 0.999999c.We deliberately chose speeds in
this range to find the limiting behavior. Notably, we let v approach c
and did not set it equal to c.
We performed cases 1 to 3 and cases 4 to 6 to illustrate convergence

to speed c. Notice as the speed approaches c that the SI turn angle is
convergent. Because of the equivalence of SI and GR, the turn angle
converges to the value determined by thewell-known GR bending of
light formula, δN � �4GM∕c2B�, whereB is the impact parameter or
distance of closest approach during the orbit. For v � 0.999999c
at release point (40RA 1RA), the impact parameter is 1RA. The
classical formula gives δN � �4GM∕c2RA� � 7.694 × 10−6 rad �
4.408 ⋅ 10−4 deg, in agreement with the SI simulation.
We performed cases 4 to 6, again, to converge to a speed of c.

Again, from the GR light formula for light grazing the surface of
Alpha Centauri A, we get, as expected, δN � �4GM∕c2RA� �
4.408 ⋅ 10−4 deg, in agreement with the SI simulations. As shown,
the offset in cases 1 to 3 is five times greater than in cases 4 to 6, and
the turn angle is five times smaller than in cases 4 to 6. The turn
angles, although very small, can have a significant effect over large
distances and therefore the return-to-Earth communication signature.
Also, notice in the rest frame of reference that SR converges to no
bending as the speed approaches c, as expected.
Finally, because light bending and spacecraft turning are math-

ematically the same problem, it is interesting to note how the rela-
tivistic accelerations in light bending change (Table 10).We see as the
light speed approaches c that the relativistic accelerations increase
rapidly. With each decimal place closer to c, the relativistic g
increases by an order of magnitude.

This and the previous three problems are illustrative of the basic
relativistic orbital physics that will underlie tradeoff mission design
studies, energy and cost budgeting, and astronavigation optimization
for interstellar travel.

VI. Discussion

This paper applied to the problem of interstellar travel of space-
craft, a new relativistic formulation of mechanics that can greatly
simplify the predictions. Commensurate with the level of mathemati-
cal and physics training that a mission specialist or any other typical
aerospace scientist has received, this paper was written for nonex-
perts in GR. Indeed, the new formulation is called spacetime impetus
and is unique because it does not explicitly require GR; its hallmark
difference is that it instead employs a relativistic universal law of
gravitation.
This paper solved four relativistic orbital mechanics problems:

three for spacecraft and one for light. When applying SI, we cast the
problems in the form of just one general problem: of a spacecraft or a
photon of light that is initially located at point a, a distance R from a
stationary gravitational source, and initially traveling at speed v
making an angle θ relative to the line between the body and the
source (Fig. 3). We considered both analytical and numerical
approaches.
The first problem was the relativistic gravitational flyby of a

spacecraft as it passes by Alpha Centauri A. We examined the turn
angle, how sensitive it is to lateral distance, andwe compared it to SR.
We observed a significant change in the direction of a spacecraft
when it passes by a gravitational source (Table 4). We also examined
the accelerations of the spacecraft during the turns (Table 5).
The second problem cataloged a family of circular orbits of a

spacecraft. It is a simple way to see the relationship between the
radius and speed of an orbit.We also showed howSR and SI compare
in the interstellar travel range of 0.1c to 0.2c. We saw that the
differences in speed and orbit radius predicted by SR and SI can be
quantitatively significant in that range (Table 6).
The third problem examined a spacecraft that undergoes an orbital

insertion, in particular a crash into Alpha Centauri A’s surface. The
spacecraft was not initially traveling at a relativistic speed. We found
that it would only reach a relativistic speed when its proximity to the
center of the source approaches the Schwarzschild radius.
The fourth and last problem pertained to telecommunications:

examining the levels of light bending one can expect. The light

Table 10 Peak relativistic acceleration (in Earth g’s) for SI and SR

x2�0� v∕c tf , s aRmax∕g �SI�a aRmax∕g (SR) ΔaRmax∕g Difference, %

1 5RA 0.999 600 1,239 0.8 1,238 99.9

2 5RA 0.9999 600 12,398 0.8 12,397 100

3 5RA 0.99999 600 123,992 0.8 123,991 100

4 1RA 0.9999 600 3.1 × 105 21 3.1 × 105 100

5 1RA 0.99999 600 3.1 × 106 21 3.1 × 106 100

6 1RA 0.99999 600 3.1 × 107 21 3.1 × 107 100

aThe results in this column agree with GR.

Table 9 Turn angle for SI and SR approaching the speed of light

x2�0) v∕c tf , s θ�tf� �SI�,a deg θ�tf) (SR), deg Δθ, deg Difference, %

1 5RA 0.999 600 8.825288 × 10–5 8.794143 × 10–8 8.804 × 10–5 99.8

2 5RA 0.9999 600 8.817372 × 10–5 8.782275 × 10–9 8.804 × 10–5 100

3 5RA 0.99999 600 8.816582 × 10–5 8.781090 × 10–10 8.816 × 10–5 100

4 1RA 0.9999 600 4.408905 × 10–4 4.408374 × 10–8 4.402 × 10–4 100

5 1RA 0.99999 600 4.408508 × 10–4 4.407779 × 10–9 4.408 × 10–4 100

6 1RA 0.999999 600 4.408468 × 10–4 4.407720 × 10–10 4.408 × 10–4 100

aThe results in this column agree with GR.
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bending problem is identical to the spacecraft problem of relativistic
flybywith the exception of the orders of magnitude of the speeds.We
examined light grazing Alpha Centauri A and obtained turn angles
that are very small but that can have a significant effect over large
distances and therefore to the return-to-Earth communication sig-
nature.
In addition to these illustrative problems, this paper also developed

a geometric interpretation of the relativistic acceleration vector in
relation to the nonrelativistic acceleration vector. It can assist the
mission planner in the assessment of the bending of a spacecraft
trajectory when it passes by a gravitational source.
With respect to the more theoretical aspects of the SI methodology,

Appendix A discusses the need for a relativistic universal law of
gravitation and demonstrates why it generates the same trajectories
that one obtains in GR. A rigorous derivation introduced the mathema-
tical mapping between SI and GR, from which we proved that the SI
governing equations andGRgoverning equations are in full agreement.
A unique feature of the SI analysis is that it retains the concept of

force along with its free body diagrams and, derived from this, its
impulse–momentum andwork–energy principles, over the full range
of speeds. This is responsible for it being relatively straightforward
to apply.

VII. Conclusions

Interstellar vehicles will pass by gravitational sources, which will
raise navigation and communication issues that must account for
general relativistic effects. Indeed, the planning for these missions
will require simulation software that performs mission design trade-
off studies, energy and cost budgeting, optimization, etc., all of which
will have to incorporate these general relativistic effects. Toward this
end, this paper applied a new relativistic formulation of mechanics,
called spacetime impetus, which was shown to greatly simplify the
incorporation of these relativistic effects. Spacetime impetus over-
came the limitation of SR not accounting for the presence of a
gravitational source, but instead of adopting the GR approach, which
relies on a mathematical apparatus for curved spacetime, it keeps
SR’s spacetime metric and employs a relativistic gravitational force
vector, which simplifies many of the difficulties that come from
implementing the GR methodology. The analyst can now update
nonrelativistic mission planning codes to give them general relativ-
istic capabilities. It requires augmenting the code with relativistic
velocities and relativistic accelerations, replacing a non-relativistic
universal law of gravitation with a relativistic universal law of
gravitation, and setting up Lorentz transformations between frames.
Also, Appendix B examines the orbit of the Parker Solar Probe
around the sun, serving as a nice tutorial problem for those who seek
to program the SI methodology.

Appendix A: Spacetime Impetus: Analytical Verification

A.1. Background

Many in physics well understand that the connections between the
different branches of physics are obscured by the disconnected
mathematical foundation upon which they currently rely. It is clear,
in the absence of external influences, that light travels along a straight
line at a constant speed, just as the particle does. This sense of the state
of physics finds considerable support in the physics community, and
it motivated the original research that led to the theory of spacetime
impetus (SI). The fundamental hypothesis is that the differences
purported to exist between the electromagnetic, mechanical, and
quantum realms do not result from the differences in our notions
about matter as much as from the differences in their states, with
electromagnetic and quantum behaviors reflecting miniscule frag-
ments of energy traveling at immense speeds and mechanical behav-
ior reflecting comparatively immense fragments of energy traveling
at comparatively miniscule speeds. The argument is made that the
particle and the wave are existentially opposite and complementary
forms of energy. The particle corresponds to a source of energy
surrounded by a void, and the wave corresponds to radiated energy

without regard to the source: incomplete when one is considered in
isolation of the other. The idea is that it is better to think of the
building block as a fragment of energy, an energy distribution that
radiates outward from its source point.
Pertaining to the support in the physics community for the con-

nections between the different branches of physics, when considering
the relationships between Newtonian theory (NT), special relativity
(SR), and general relativity (GR), the following connections are
observed: Connection 1) all three employ a four-dimensional frame-
work, Connection 2) all three employ the principle of impetus, Con-
nection 3) all three are covariant, and Connection 4) SR and GR
employ the principle of light. Pertaining to the concept of influence,
Connection 5) NT and SR describe influence by an interaction force,
and Connection 6) GR by a spacetime curvature vector. Finally,
pertaining to GR, it first appears to be the least connected to the other
theories becauseof its employment of a curved spacetime framework, a
principle of equivalence, and a principle of least action. However,
Connection 7) each of these devices is connected to the devices that the
other theories draw from. We now consider each of these connections
one at a time:
Connection 1): The Newtonian framework is dictated by the spatial
metric dl2 � dxrdxr (summing over r from 1 to 3) and an indepen-
dent temporal coordinate from which one derives the Galilean trans-
formation. The Minkowski framework is dictated by the spacetime
metric c2dτ2 � c2dt2 − dl2 from which one derives the Lorentz
transformation. General relativity employs the Riemannian frame-
work dictated by the curved spacetime metric c2dτ2 � grsdxrdxs
(summing over r and s from 0 to 3) for which the principle of
least action leads to the generally covariant governing equation 0 �
�d2xt∕c2dτ2� � Γt

rs�dxr∕cdτ��dxs∕cdτ� (summing over r and s
from 0 to 3), where the affine connection Γt

rs is defined in terms
of the metric coefficients grs by Γt

rs � �1∕2�gtq��∂gqr∕∂xs� �
�∂grs∕∂xq� � �∂gsq∕∂xr�� (summing over q from 0 to 3), where
grugus � δrs (summing over u from 0 to 3).
Connection 2): The principle of impetus in the Newtonian frame-
work is Fr � mar�r � 1; 2; 3� and in the spacetime framework is
Fr � maRr�r � 1; 2; 3�. The principle of impetus is mathematically
equivalent to the principle of least action, and so, in principle, GR
employs the principle of impetus, too.
Connection 3): Covariance refers to the notion that governing equa-
tions should hold locally across frames of reference. In NT, the
existence of an inertial frame was once believed to violate covariance.
The Newton–Cartan theory [23] showed that NT is covariant, and
covariance was later applied across theories [24].
Connection 4): TheNewtonian theory does not apply to light, and SR
applies to light except in the presence of a gravitational source.
Connection 5): Spacetime impetus distinguishes between an action
force vector Pr�r � 1; 2; 3� and an interaction force vector
Fr�r � 1; 2; 3�. The action force vector is a field quantity associated
with a source. In contrast, the interaction force vector is associated
with a source and the body on which it acts. They are related by
Fr � mPr, where m is the mass of the body on which the force
vector acts. Historically, this distinction was not present in NT,
which resulted in some ambiguity and then why inertial mass and
gravitational mass were inexplicitly equal [21].
Connection 6): TheNewtonian theory describes influencemathemati-
cally by the concept of force, applying it to general externally applied
cases and in particular to gravitational forces governed by a universal
law of gravitation. Special relativity describes influence mathemati-
cally by the concept of force, too, applying it to general externally
applied forces, but it treated the gravitational force incorrectly. General
relativity describes influence mathematically by the curvature of
spacetime, where the curvature is produced by gravitation.
Connection 7): These differences are more superficial than substan-
tive. Historically, the principle of equivalence and the principle of
least action were invoked to justify replacing the gravitational force
with a corresponding curvature of spacetime. These steps produced a
geometrized description of physical behavior that is governed by
geodesic equations. The geodesic equations express the principle of
least action for an action that is set equal to ∫ dτ. However, it has been

SILVERBERG AND EISCHEN 9



deduced from the existence of a mapping between the Minkowski
and Riemannian frameworks and from the equivalence of the
principles of least action and of impetus in the Minkowski spacetime
framework that the mapping from the Minkowski framework to the
Riemannian frameworkwas never necessary, and that one could have
startedwith the principle of impetus, at least for the problemof a body
passing by an isotropic gravitational source.

A.2. Need for a Relativistic Universal Law of
Gravitation

Spacetime impetus provided an important connection between NT,
SR, and GR. The SI connection to NT stemmed from SI’s relativistic
correction to the universal law of gravitation employed by NT. The SI
connection toSRwasmadebyadopting the spacetimemetric employed
by SR. Finally, the SI connection to GR arose from SI’s governing
equations, which transform mathematically to the same equations in
GR that govern the motion of a body under the influence of a gravita-
tional source. We now address the steps that motivated the SI connec-
tion to NT, specifically the relativistic universal law of gravitation.
To motivate the need for a relativistic universal law of gravitation,

we first return toNTand refer to Fig. A1,which shows a body passing
by a stationary gravitational source at a speed v. At the instant shown,
the source draws the body toward it. In NT, one expresses this
attraction by a gravitational force vector F that obeys the universal
law of gravitation. NTexpresses the concept of impetus by its second
law F � ma. When the speed of the body is near the light limit, the
gravitational forcevector togetherwith the second lawpredict that the
body’s speed will just continue to increase beyond the light limit,
violating the principle of light.
Altogether, there were the following three options to address this

violation, recognizing that it stemmed from the employment of the
two aforementioned propositions and from not employing a principle
of light:
1) Modify the universal law of gravitation in NT.
2) Modify the second law in NT.
3) Replace the universal law of gravitation inNT, the second law in

NT, or both.
From among these options, SR sought to satisfy the principle of

light by adopting remedy 2, that is, by reformulating the second law
in spacetime. It replaced the spatial metric dl2 � dr ⋅ dr with the
spacetime metric c2dτ2 � c2dt2 − dl2 and modified its definition of
linear momentum from mv, where m is mass and v is the non-
relativistic velocity vector, to mvR, where vR is the relativistic
velocity vector. These modifications successfully limited the speeds
of bodies to that of light and were mathematically consistent with
electromagnetism. However, SR did not account for the bending of
light or the bending of the path of any other body traveling at a
relativistic speed when it passes by a gravitational source. In fact,
with the universal law of gravitation, SR incorrectly predicts that the
path of light in the presence of a nearby gravitational source does not
bend. Thus, the question remained how to correctly predict the
bending of the trajectory of a body when it passes by a gravitational
source. From among the possible remedies to these problems with
NT and SR, GR adopted remedy 3, abandoning remedies 1 and 2,
while recognizing that it would need to agreewithNTwhen the speed
of the body is small compared to the light limit. The originally
adopted approach was to formulate a minimum proper time (least
action) problem in a curved spacetime, where its curvature is gov-
erned by a Riemannian metric that satisfies the principle of light and
the effect of gravity. For the two-body gravitational problem, the
Riemannian metric reduces to the Schwarzschild metric. The GR
mathematical apparatus was formidable; it never became standard

fare in education, which continues to make it difficult for the space-
craft and rocketry communities, among others, to analyze the trajec-
tories of bodies that are bent by nearby gravitational sources.
From among the possible remedies to the problems with NTand

SR, SI addressed the aforementioned predicament in a very differ-
ent way. Spacetime impetus adopted remedies 1 and 2, instead of
adopting remedy 3. In fact, SI adopted the same remedy 2 that SR
adopted, but unlike SR it also adopted remedy 1. It modified the
gravitational law so that it conforms to the principle of light.
Toward this end, two important requirements were invoked. First,

it can be shown that the gravitational force vector, to conform to the
principle of light, must satisfy proper limiting conditions; it would
need to be on the order of γ2. (The eigenvalue problem for the
transformation from relativistic acceleration components to nonrela-
tivistic acceleration components developed in [17] gives the neces-
sary limiting conditions.) Second, it was understood that the lack of
bending in SR is not an affliction for the radial component of the
trajectory because it already points toward the source and has no need
to bend. The affliction results from the component perpendicular to
the radial direction in the plane of the two-body problem (the azimu-
thal direction). Thus, the SI development singled out a factor of the
form

1 − vr
c

2

1 − v
c

2
� 1�

vϕ
c

2

1 − v
c

2
� 1� vRϕ

c

2

As required, this factor, when multiplied by the gravitational poten-
tial energy inNT, is on the order of γ2 and is such that it does not affect
the radial component of the body’s motion. The relativistic potential
energy (fragment of energy) takes on the form

V � − 1� vRϕ
c

2 GMm

r
; a�r� � 1� vRϕ

c

2

where a�r� is the relativistic correction in the potential energy.
(The fragment of energy refers to the potential energy of a point
source of energy.) Taking partial derivatives with respect to the
spatial coordinates, we obtain the relativistic universal gravita-
tional law

Fr � 1� 3
vRϕ
c

2 GMm

r3
xr b�r� � 1� 3

vRϕ
c

2

where b�r� is the relativistic correction in the force vector. [One
finds the gravitational force vector from F � −∇V. When taking
partial derivatives, the term vRϕ appears to be an explicit function of
time. However, from conservation of relativistic angular momen-
tum, one can express vRϕ as an explicit function of r. The angular
momentum of the two-body system about the system’s mass center
is H � rμvRϕ, where μ � Mm∕�M�m� is the reduced mass, and
so vRϕ � H∕�rμ�. Upon substitution, one can then take the needed
partial derivatives. Also, note for spacecraft that m ≪ M for which
it is sufficient to set μ equal to m].

A.3 Relativistic Universal Law of Gravitation and the
Schwarzschild Solution: A Mathematical Proof

In the following, we first set up the mathematics of ordinary
spacetime, state the propositions made by SI and GR, describe the
structure of the proof, and then develop the temporal map and the
spatial map that prove that the SI solution and the Schwarzschild
solution are identical.

a. Ordinary Spacetime

We first set up the ordinary spacetime framework according to
which

c2dτ2 � c2dt2 − dl2 (A1a)Fig. A1 Body passing a gravitational source.
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dl2 � dr ⋅ dr � dx21 � dx22 � dx23 (A1b)

In an absolute time analysis, one takes dl to be the same in different
reference frames; the frames can be accelerating relative to each
other. One refers to dl as the spatial metric or the spatial length. In
a relativistic time analysis, one takes dτ to be the same in different
frames; again, the frames can be accelerating relative to each other.
One refers to cdτ as the spacetime metric or the spacetime length. In
Eq. (A1), c is the speed of light, τ is the proper time, t is the relativistic
time, and l is the spatial length, inwhich x1, x2, and x3 are rectangular
coordinates. The position vector is r � x1i1 � x2i2 � x3i3, where
i1, i2, and i3 are unit vectors. Equation (A1a) is the ordinary space-
time metric. By dividing it by dτ2, we obtain the Lorentz factor

γ � dt∕dτ � 1∕ 1 − �v∕c�2, where v � dl∕dt is speed. In abso-
lute (Newtonian) time, one assume that dl ≪ cdt from which the
ordinary spacetime metric reduces to t � τ. The Lorentz factor
dictates the transition between absolute time and relativistic time.
In absolute time, the velocity vector is v � dr∕dt, and the acceler-
ationvector isa � dv∕dt. In relativistic time, the relativistic velocity
vector is vR � dr∕dτ, and the relativistic acceleration vector is
aR � dvR∕dτ. The velocity vector is v � v1i1 � v2i2 � v3i3, the
relativistic velocity vector is vR � vR1i1 � vR2i2 � vR3i3, the accel-
eration vector is a � a1i1 � a2i2 � a3i3, and the relativistic accel-
eration vector is aR � aR1i1 � aR2i2 � aR3i3. With the Lorentz
factor, it follows from Eq. (1) that the velocity vector and the
relativistic velocity vector are related by

vR � γv; v � 1

γ
vR (A2)

Let us now determine the relationships between the acceleration
vector and the relativistic acceleration vector. First, we express the
relativistic acceleration vector in terms of the velocity and acceler-
ation vectors. The individual steps are
1) Invoke the product and chain rules:

aR � dvR
dτ

� dt

dτ

d

dt
�γv� � γ

dγ

t
v� γa

2) Starting with the definition of the Lorentz factor, recognize
that the square of the magnitude of the velocity vector is v2 �
v ⋅ v � v21 � v22 � v23, and invoke the product and chain rules:

dγ

dt
� d

dt
1 −

v

c

2 −1∕2
� d

dt
1 −

v ⋅ v
c2

−1∕2

� −
1

2
1 −

v ⋅ v
c2

−3∕2
−
v ⋅ a� a ⋅ v

c2

� −
1

2
1 −

v ⋅ v
c2

−�3∕2�
−2

v ⋅ a
c2

� γ3
v ⋅ a
c2

3) Finally, substitute step 2 into step 1 and rearrange terms:

aR � γ
dγ

dt
v� γa � γ γ3v

v ⋅ a
c2

� γa

� γ2 a� γ2

c2
�v ⋅ a�v

Done.
Next, we derive the inverse relationship, that is, the acceleration

vector in terms of the relativistic velocity and acceleration vectors.
4) Take the dot product of v and aR in step 3, and form a common
denominator:

v ⋅ aR � v ⋅ γ2 a� γ2

c2
�v ⋅ a�v � γ2�v ⋅ a� 1� γ2

v

c

2

� γ2�v ⋅ a� 1� 1

1 − v
c

2

v

c

2

� γ2
v ⋅ a

1 − v
c

2
1 −

v

c

2

� v

c

2

� γ4v ⋅ a

5) Finally, substitute step 4 in to step 3 and solve for a:

aR � γ2 a� γ2

c2
�v ⋅ a�v � γ2 a� γ2

c2
1

γ4
�v ⋅ aR�v

� γ2a� 1

c2
�v ⋅ aR�v

a � 1

γ2
aR −

1

c2
�v ⋅ aR�v

Done.
Steps 1 through 5 determined the relationships between the accel-

eration vector and the relativistic acceleration vector, which are again

aR � γ2 a� γ2

c2
�a ⋅ v�v (A3a)

a � 1

γ2
aR −

1

c2
�v ⋅ aR�v (A3b)

b. Spherical Coordinates

We now express the spacetime metric, the velocity and acceler-
ation components, and Eq. (A3b) in terms of spherical coordinates;
the radial coordinate is r, the polar coordinate is θ, and the azimuthal
coordinate is ϕ. In terms of spherical coordinates, the rectangular
coordinates are

x1 � rsθcϕ; x2 � rsθsϕ; x3 � rcθ (A4)

In Eq. (A4), we used the abbreviated notation sθ � sin θ; cθ � cos θ;
sϕ � sinϕ, and cϕ � cosϕ. First, we determine the spacetimemetric
in spherical coordinates.
1) By differentiation of Eq. (A4), the increments of the rectangular

coordinates are

dx1 � sθcϕdr� rcθcϕdθ − rsθsϕdϕ;

dx2 � sθsϕdr� rcθsϕdθ� rsθcϕdϕ;

dx3 � cθdr − sθdθ

2) From step 1, expand, regroup, and cancel terms given that
1 � s2θ � c2θ, and that 1 � s2ϕ � c2ϕ to express dl2 in spherical
coordinates:

dl2 � dx21 � dx22 � dx23 � �sθcϕdr� rcθcϕdθ − rsθsϕdϕ�2
� �sθsϕdr� rcθsϕdθ� rsθcϕdϕ�2 � �cθdr − sθdθ�2

� �s2θc2ϕ � s2θs
2
ϕ � c2θ�dr2 � �c2θc2ϕ � c2θs

2
ϕ � s2θ�r2dθ2

� �s2ϕ � c2ϕ�r2s2θdϕ2 � �2sθcϕcθcϕ � 2sθsϕcθsϕ

− 2cθsθ�rdrdθ� �−2sθcϕsθsϕ � 2sθsϕsθcϕ�rdrdϕ
� �−2cθcϕsθsϕ � 2cθsϕsθcϕ�r2dθdϕ

� dr2 � r2dθ2 � r2s2θdϕ
2
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3) Finally, substitute step 2 into Eq. (A1a) to get the spacetime
metric in spherical coordinates:

c2dτ2 � c2dt2 − dl2 (A5a)

dl2 � dr2 � r2dθ2 � r2 sin2 θdϕ2 (A5b)

Done.
Next, assume that the motion is planar by letting x3 � 0

(θ � π∕2�, and express the velocity and acceleration components
in terms of r and ϕ.
1) From Eq. (A4), the radial and circumferential unit vectors are

nr �
r

r
� 1

r
�x1i1 � x2i2� � cϕi1 � sϕi2;nϕ � −sϕi1 � cϕi2

2) By time differentiation in step 1

dnr

dt
� �−sϕi1 � cϕi2�

dϕ

dt
� dϕ

dt
nϕ;

dnϕ

dt
� �−cϕi1 − sϕi2�

dϕ

dt
� −

dϕ

dt
nr

3) From step 2, the velocity vector and its r and ϕ components
are

v � vrnr � vϕnϕ � dr

dt
� d

dt
�rnr� �

dr

dt
nr � r

dϕ

dt
nϕ;

vr �
dr

dt
; vϕ � r

dϕ

dt

4) Finally, from step 2 and step 3, the acceleration vector is

a � arnr � aϕnϕ � dv

dt
� d

dt
�vrnr � vϕnϕ�

� dvr
dt

− vϕ
dϕ

dt
nr � vr

dϕ

dt
� dvϕ

dt
nϕ

� d2r

dt2
− r

dϕ

dt

2

nr �
dr

dt

dϕ

dt
� dr

dt

dϕ

dt
� r

d2ϕ

dt2
nϕ

� d2r

dt2
− r

dϕ

dt

2

nr � r
d2ϕ

dt2
� 2

dr

dt

dϕ

dt
nϕ

Done.
Abbreviate a derivative with respect to time t by an over dot. The

velocity vector, the acceleration vector, and their components given
previously are

v � _rnr � r _ϕnϕ; vr � _r; vϕ � r _ϕ (A6)

a � ��r − r _ϕ2�nr � �r �ϕ� 2_r _ϕ�nϕ; ar � �r − r _ϕ2;

aϕ � r �ϕ� 2_r _ϕ (A7)

Next, develop the expressions for the r and ϕ components of the
relativistic velocity vector and the relativistic acceleration vector. We
maintain the same r and ϕ coordinates and the same corresponding
unit vectors nr and nϕ for relativistic quantities as for nonrelativistic
quantities because the position vector is the same in both descrip-
tions; there is just one spatial geometry. It follows that the steps taken
that led to Eqs. (A6) and (A7) for v anda are the same as the steps that
will lead to vR and aR except that the differentiations will be with
respect to proper time τ instead of time t. Abbreviate a derivativewith
respect to proper time τ by a prime. Instead of Eqs. (A6) and (A7), one
now obtains

vR � r 0nr � rϕ 0nϕ; vRr � r 0; vRϕ � rϕ 0 (A8)

aR � �r 0 − rϕ 02�nr � �rϕ 0 � 2r 0ϕ 0�nϕ ; aRr � r 0 − rϕ 02;

aRϕ � rϕ 0 � 2r 0ϕ 0 (A9)

Finally, express Eq. (A3b) in terms of r and ϕ.
1) The individual terms in Eq. (A3b), expressed in terms of r andϕ,

are

v � vrnr � vϕnϕ; a � arnr � aϕnϕ; aR � aRrnr � aRϕnϕ

2) From step 1

v ⋅ aR � �vrnr � vϕnϕ� ⋅ �aRrnr � aRϕnϕ� � vraRr � vϕaRϕ

3) Substitute the terms in step 1 and step 2 into Eq. (A3b):

arnr � aϕnϕ � 1

γ2
aRrnr � aRϕnϕ

−
1

c2
�vraRr � vϕaRϕ��vrnr � vϕnϕ�

4) The radial and circumferential components in step 3 are

ar �
1

γ2
aRr −

1

c2
�vraRr � vϕaRϕ�vr

aϕ � 1

γ2
aRϕ −

1

c2
�vraRr � vϕaRϕ�vϕ

5) From Eq. (A9) and step 4, Eq. (A7) are rewritten in the matrix–
vector form:

ar

aϕ
� 1

γ2

1 −
vr
c

2

−
vr
c

vϕ
c

−
vr
c

vϕ
c

1 −
vϕ
c

2

aRr

aRϕ

;

aRr

aRϕ
� r 0 − rϕ 02

r 0 � 2r 0ϕ 0 ;
ar

aϕ
� �r − r _ϕ2

r �ϕ� 2_r _ϕ
(A10)

Done.

c. Spacetime Impetus

Spacetime impetus assumes the ordinary (Minkowski) spacetime
framework developed earlier. In that framework, the governing equa-
tions are

R � maR (A11a)

F � − 1� 3
vRϕ
c

2 GMm

r3
r (A11b)

Equation (A11a) expresses the principle of impetus, in which R is a
resultant interaction force vector acting on a source. Equation (A11b)
expresses a relativistic gravitational force vector by a stationary
source of massM that acts on a moving source of massm, and where
G is a universal gravitational constant. The term 1� 3�vRϕ∕c�2 is the
relativistic correction to the gravitational force. For the two-body
problem. R � F.

d. General Relativity

General relativity assumes a curved (Riemannian) spacetime frame-
work.Note that, inGR, for an isotropic source, the usual formulationof
GR employs Schwarzschild coordinates [25]. Besides the singularity
at r � 0, it has another singularity at the Schwarzschild radius r � rs
(although its original formulation only had the one singularity
at r � 0). Eddington–Finkelstein coordinates are one alternative
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[26]. They suggest that the singularity in the Schwarzschild co-
ordinates at rs is not “physical.” Kruskal–Szekeres coordinates
[27] are another alternative. When using them, a body falling into
a black hole crosses the event horizon, unlike when using the
Schwarzschild coordinates. Gullstrand–Painlevé coordinates are
yet another alternative [28,29]. They also eliminate the singularity
at rs. The different alternatives produce black holes that differ, and
the differences have not yet been observed. These questions would
not appear to impact interstellar travel unless one was getting close
to a black hole.
In any event, its spacetime framework and governing equations are

0 � δ c dτG (A12a)

where

c2dτ2G �
3

a�0

3

b�0

gabdx
2
Gb (A12b)

Equation (A12a) expresses the principle of least action for an action
that is equal to the speed of light c. Equation (A12b) gives the
Riemannian (quadratic) spacetime metric, in which gab are coeffi-
cients that need to be determined. In Eq. (A12b), xG0 � ctG, where
tG is a temporal coordinate and xG1; xG2, and xG3 are spatial coor-
dinates. The principle of general covariance leads to the geodesic
equations

0 � dx2Ga

ds2
�

3

c�0

3

d�0

Γa
cd

dxGc

ds

dxGd

ds
(A13a)

Γa
cd � −

1

2

3

b�0

gab
∂gcb
∂xGd

� ∂gdb
∂xGc

� ∂gcd
∂xGb

(A13b)

Equation (A13a) governs the geodesic motion, and the metric coef-
ficients gab are determined for a particular problem from Eq. (A13b)
with conditions that satisfy the principle of light.
The first exact solution to Eq. (A13) was found by Schwarzschild

for the two-body problem. The solution, called the Schwarzschild
metric, is

c2dτ2G � 1 −
rs
rG

c2dt2G − 1 −
rs
rG

−1
dr2G − r2Gdθ

2
G

− r2G sin2 θ2Gdϕ
2
G (A14)

where rs � �2GM∕c2� is called the Schwarzschild radius. By divid-
ing Eq. (A14) by dτ2G, we set the action to

L � c2 � 1 −
rs
rG

c2t 02G − 1 −
rs
rG

−1
r 02G − r2Gθ

02
G

− r2G sin2 θ2Gϕ
02
G (A15)

The solution to Eq. (A12) is then obtained by solving the associated
Lagrange equations (for θG � π∕2):

∂L
∂t 0G

0
−

∂L
∂tG

� 0 ;
∂L
∂r 0G

0
−

∂L
∂rG

� 0 ;
∂L
∂ϕ 0

G

0
−

∂L
∂ϕG

� 0

(A16)

1) The derivatives of L in Eq. (A15) (for θG � π∕2) are

∂L
∂t 0G

� 2 1 −
rs
rG

c2t 0G;
∂L
∂r 0G

� −2 1 −
rs
rG

−1
r 0G;

∂L
∂ϕ 0

G

� −2r2Gϕ 0
G;

∂L
∂tG

� 0;

∂L
∂rG

� rs
r2G

c2t 02G � 1 −
rs
rG

−2 rs
r2G

r 02G − 2rGϕ
02
G ;

∂L
∂ϕG

� 0

2) Substitute the derivatives in step 1 into Eq. (A16):

1−
rs
rG

t 0G
0
�0;

1−
rs
rG

−1
r0G

0
�1

2

rs
r2G

c2t02G � 1−
rs
rG

−2 rs
r2G

r02G −2rGϕ
02
G �0;

�r2Gϕ0
G�0 �0 (A17)

3) The spatial part of the governing equations can be isolated from
the temporal part of the governing equations, first by defining u �
1∕rG and then by expressing u as a function of ϕ. The spatial
governing equation is from Eq. (A17). The steps, which are given
elsewhere (see [22] p. 208), yield

d2u

dϕ2
G

� u −
3GM

c2
u2 � GM

h2
(A18a)

for constant

h � rvRϕ (A18b)

In Eq. (A7), h is the specific angular momentum of the two-body
system. The solution applies to bodies that have an appreciable
amount of mass down to bodies that travel at the speed of light for
which 1∕h tends to zero [22].

e. Structure of the Proof

The ordinary spacetime metric in Eq. (A5) and the Schwarzs-
child metric in Eq. (A14) are both functions of four coordinates.
The coordinates in SI are r; θ;ϕ, and t, and the coordinates in GR
are rG; θG;ϕG, and tG. The coordinates r; θ, and ϕ, and rG; θG, and
ϕG are spatial coordinates, and t and tG are temporal coordinates.
Regardless of the distinction between spatial and temporal coor-
dinates, in both ordinary and curved spacetime, the path of a
trajectory of a point is a function of four coordinates. The number
is the same, and so, broadly, one might expect there to exist a one-
to-one mapping between the four coordinates in SI and GR, a
mapping that essentially “deforms” the ordinary spacetime coor-
dinates to produce curved spacetime coordinates. Indeed, although
there has been a “historical separation” between ordinary space-
time and curved spacetime, one would logically expect them to
be connected. The proof given as follows will reveal that in fact
the spatial coordinates map to themselves; we will find that rG �
r; θG � θ, andϕG � ϕ, leaving uswith the need to find themapping
between relativistic time t andGR coordinate time tG. Note, because
the spatial coordinates map to themselves, there is no bending of
space within a frame of reference; the relativistic effects are across
frames of reference and result from the invariance of the speed of
light (or equivalently the invariance of proper time) across these
frames. In other words, it will turn out that we will only need to
“deform” time.
Throughout the proof, note that SI knowledge is found in the

ordinary spacetime apparatus, which is given in Eqs. (A1–A10),
and the SI proposition, which is given in Eq. (A11), and that the GR
knowledge is found in Eqs. (A12–A18). The proof deduces GR
behavior from SI behavior, in other words, proves that they are
the same.
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There are a variety of ways of organizing the proof. We have
chosen to separate the temporal aspects from the spatial aspects
because it is perhaps more insightful this way. We will first
determine the temporal map, as though we have already proven
that the spatial coordinates map to themselves, and after that,
we will determine the spatial map, proving that the spatial co-
ordinates do indeed map to themselves. To determine the tempo-
ral map, we will start with the ordinary spacetime metric in
Eq. (A5) and find how it transforms to the Schwarzschild metric
in Eq. (A14). To determine the spatial map, we will start with the
governing equations in SI and manipulate them into a spatial
governing equation that is identical to the spatial equation in GR,
Eq. (A18), proving that the spatial coordinates in SI and GR are
the same.

f. Temporal Map

The determination of the temporal map is as follows.
1) Set the spacetime metric in Eq. (A5a) equal to the curved

spacetime metric in Eq. (A14) (dτ2G � dτ2). Also, let rG � r;
θG � θ, and ϕG � ϕ to facilitate the derivation, as explained
earlier:

c2dt2 − dr2 − r2dθ2 − r2 sin2 θdϕ2

� 1 −
rs
r

c2dt2G − 1 −
rs
r

−1
dr2 − r2dθ2 − r2 sin2 θdϕ2

2) Cancel the terms −r2dθ2 − r2 sin2 θdϕ2 on both sides of the
equation:

c2dt2 − dr2 � 1 −
rs
r

c2dt2G − 1 −
rs
r

−1
dr2

3) Divide by dt2 and solve for �dtG∕dt�2:

c2 −
dr

dt

2

� 1 −
rs
r

c2
dtG
dt

2

− 1 −
rs
r

−1 dr

dt

2

1 −
1

c2
dr

dt

2

� 1

c2
1 −

rs
r

−1 dr

dt

2

� 1 −
rs
r

dtG
dt

2

dtG
dt

2

� 1

1 − rs
r

1 −
1

c2
dr

dt

2

� 1

c2
1 −

rs
r

−1 dr

dt

2

� 1

1 − rs
r

1� 1

c2
−1� 1

1 − rs
r

dr

dt

2

4) Form a common denominator and take the square root:

dtG
dt

2

� 1

1 − rs
r

1� 1

c2

rs
r

1 − rs
r

dr

dt

2

;

dtG
dt

� 1

1 − rs
r

1� 1

c2

rs
r

1 − rs
r

dr

dt

2 1∕2

Done.

g. Spatial Map

The spatial map is determined as follows.
1) From Eq. (A11b), the r and ϕ components of the relativistic

gravitational force vector in SI are

Fr � −G
Mm

r2
1� 3

vRϕ
c

2

; Fϕ � 0

2) From Eq. (A11a), the r and ϕ components of the relativistic
gravitational acceleration vector in SI are

aRr � −G
M

r2
1� 3

vRϕ
c

2

; aRϕ � 0

3) From step 2 and Eq. (A9)

r′′ − rϕ 02 � −G
M

r2
1� 3

vRϕ
c

2

0 � rϕ′′ � 2r 0ϕ 0 (A19)

4) Invoke Eq. (A8) and define the specific angular momentum
as h � rvRϕ � r2ϕ 0. Differentiate h with respect to proper time,
invoke the product and chain rules, and from the second equation
in step 3

h 0 � �r2ϕ 0� 0 � r2ϕ′′ � 2rr 0ϕ 0 � r�rϕ′′ � 2r 0ϕ 0� � 0 (A20)

Thus, h is constant.
5) Let u � 1∕r. Differentiate with respect to ϕ, invoke the power

and chain rules, and step 4

du

dϕ
� d

dϕ

1

r
� d

dϕ
r−1 � −r−2

dr

dϕ
� −r−2

dr

dτ

dτ

dϕ
� −

1

h

dr

dτ

6) Differentiate again with respect to ϕ:

d2u

dϕ2
� d

dϕ
−
1

h

dr

dτ
� dτ

dϕ

d

dτ
−
1

h

dr

dτ
� −

1

h

dτ

dϕ

d2r

dτ2

� −
1

r2
dτ

dϕ

2 d2r

dτ2

7) From step 5 and step 6

d2u

dϕ2
� u � −

1

r2
dτ

dϕ

2 d2r

dτ2
� 1

r
� −

1

r2
dτ

dϕ

2 d2r

dτ2
− r

dϕ

dτ

2

� −
1

r2
dτ

dϕ

2

aRr

8) From step 7 and step 2

d2u

dϕ2
� u � 1

r2
dτ

dϕ

2 GM

r2
1� 3

vRϕ
c

2

� 1

r4
dτ

dϕ

2

GM 1� 3
vRϕ
c

2

� GM

h2
1� 3

h

rc

2

� GM

h2
� 3GM

c2
u2

d2u

dϕ2
� u −

3GM

c2
u2 � GM

h2

This is identically Eq. (A18). Thus, rG � r; θG � θ, and ϕG � ϕ.
End of proof

Appendix B: Spacetime Impetus: Numerical Verification

The prediction of the anomalous precession of Mercury is a fine
example of a problem in which the speed of light has an effect on an
orbiting body, albeit it is a very small effect. This problemwas one of
the first used to verifyGR, and itwas the first one used by SI during its
development to verify that its results agreewith those obtained in GR
[17,21]. NASA’s ongoing Parker Solar Probe is another body in a
nominally elliptical orbit around the sun that precesses. It, too, serves
as a fine tutorial problem for those who would like to implement SI
and numerically verify the agreement between SI and GR. This
appendix gives the details needed to set up and solve this problem
by both SI and GR.
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B.1. SI Orbital Equations

From line 5 of Table 1, the acceleration components are

ax � − 1 −
v

c

2

x 1 −
vx
c

2

− y
vxvy
c2

×
GM

r3
1� 3

vRϕ
c

2

ay � − 1 −
v

c

2

−x
vxvy
c2

� y 1 −
vy
c

2

×
GM

r3
1� 3

vRϕ
c

2

(B1)

where

r � x2 � y2; vRϕ � γ

r
�−yvx � xvy�; v � v2x � v2y;

γ � 1

1 − v
c

2

It is understood that x � x�t�; y � y�t�; vx � vx�t�; vy � vy�t�;
ax � ax�t�, and ay�t�. For purposes of numerical integration, for
which position and velocity components are calculated forward in
time, we rewrite the acceleration components in state-variable form
as four first-order differential equations in terms of the state variables:

z1�t� � x; z2�t� � y; z3�t� � vx; z4�t� � vy (B2)

Substituting Eq. (B2) into Eq. (B1), the SI state equations are

dz1
dt

� z3

dz2
dt

� z4

dz3
dt

� − 1 −
v

c

2

z1 1 −
z3
c

2

− z2
z3z4
c2

×
GM

r3
1� 3

vRϕ
c

2

dz4
dt

� − 1 −
v

c

2

−z1
z3z4
c2

� z2 1 −
z4
c

2

×
GM

r3
1� 3

vRϕ
c

2

(B3)

where

r � z21 � z22; vRϕ � γ

r
�−z2z3 � z1z4�;

v � z23 � z24; γ � 1

1 − v
c

2

B.2. GR Orbital Equations

The classic differential equation in GR that describes the spatial
behavior of a massive particle [22] is again (Eq. (A18))

d2u

dϕ2
� 3GM

c2
u2 − u� GM

h2
(B4)

where u�ϕ� � 1∕r�ϕ�with the spherical coordinates r and ϕ in the
equatorial plane. The specific relativistic angular momentum h,
which is constant during the motion, is

h � r2
dϕ

dτ
� rvRϕ

Note when �rs∕r� → 0 that �dτ∕dt� � 1 − rs
r ∕γ; in the Parker

probe orbit we can let �rs∕r� � 0. Also, the following expressionwill
be useful when setting up the initial conditions:

du

dϕ
� −

1

r2
dr

dϕ
(B5)

For purposes of numerical integration, for which the variables u
and du∕dϕ are calculated forward in time, we rewrite Eq. (B4) in
state-variable form in terms of the new state variables:

z1�t� � u; z2�t� �
du

dϕ
(B6)

Substituting Eq. (B6) into Eq. (B5), the GR state equations are

dz1
dϕ

� z2

dz2
dϕ

� 3GM

c2
z21 − z1 �

GM

h2
(B7)

Numerically, the GR state equations are just about as simple to
solve as the SI state equations. However, both conceptually and
mathematically, this can be misleading. For one, Eq. (B7) follows
from a complicated mathematical apparatus that is unique to GR,
in which one deduces geodesic equations from a Schwarzschild
metric [see the steps from Eqs. (A12–A17)] after which Eq. (B4)
is derived [22]. Of course, Eq. (B4) only provides spatial infor-
mation; it is missing temporal information (time, velocities, and
accelerations). To find them, one goes back to the geodesic equa-
tions. Also, in SI, we find that one can transform from one frame to
another by the Lorentz transformation. Finally, the SI methodology
must be regarded as a relativistic extension of NT, drawing directly
from the different principles already employed in nonrelativistic
mechanics (principles of linear and angular momentum, work and
energy, least action, the concept of force, etc.), whichmakes it more
familiar.

B.3. Numerical Data

Table B1 shows the orbital data for Mercury and the Parker probe.
These data can be used to predict the orbit and, more specifically, the
precession of the orbits of Mercury and the Parker probe. Here, we
will focus on the Parker probe. The SI and GR simulations of the
Parker probe are started at the perihelion position where the probe is
closest to the sun and moving the fastest. Its initial conditions, in
terms of the state variables, are
For SI:

z1�0� � x�0� � 6.859788 × 109 m; z2�0� � y�0� � 0;

z3�0� � vx�0� � 0; z4�0� � vy�0� � 190.8 × 103 m∕s

Table B1 Mercury and Parker probe data

Mercury Parker probe

Mass m, kg 3.3022 × 1023 50

Perihelion radius rp, m 4.60012 × 1010 6.859788 × 109

Semimajor axis A, m 57.91 × 109 57.766 × 109

Eccentricity e of the
orbit

0.20566 0.881

Perihelion velocity
vp, m/s

58.98 × 103 190.800 × 103

Orbital period T 87.969 Earth days =
7,600,530 s

88 Earth days =
7,603,200 s
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For GR:

z1�0� � u�0� � 1

6.859788 × 109
m−1; z2�0� �

du

dϕ
�0� � 0

h�0� � r�0�vRϕ�0�

� 6.859788 × 109 ×
190.8 × 103

1 − �190.8 × 103∕2.99 × 108�2
m2

s

B.4. Results

Figure B1 shows the SI simulation of slightly more than one orbit
of the Parker probe. The precession of the orbit is present but not
visible on the scale of this plot. The derivative of the orbital radius r is
calculated with respect to time t in the vicinity of the second peri-
helion. Figure B2 is the “precession plot,”where the azimuthal angle
δφ is plotted just past 2π. We know the orbit is at the second
perihelion when �dr∕dt� � 0. For the Parker probe, this occurred
at δφ � 2.17 × 10−6 rad. Note that Mercury has a precession angle
per orbit of δφ � 5.047 × 10−7 rad, which is an order of magnitude
smaller.
It is perhaps best to use a very accurate and reliable numerical ODE

solver for the SI and GR problems. In MATLAB, the ODE 45 solver
is recommended, while in Maple the DVERK78 solver is very good.

Note that these precessionvalues are due only to relativistic effects.
We ignore the tugs of other planets, solar oblateness, solar radiation,
orbit maneuvers, etc. Of course, when reverting back to nonrelativ-
istic mechanics, there is no precession at all �δφ � 0 rad�.
Because of the equivalence of SI and GR, one can check the

numerical value obtained previously by SI for the precession of the
Parker probe from theGR formula δϕ � 6πG�M�m�∕c2A�1 − e2�
to get 2.17 × 10−6 rad∕orbit.
The MAPLE codes that simulate the trajectories employing both

the SI and GR equations of motion are available on GitHub [30].
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